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Analysis of Piled Rafts 

 

Preface 

 

Today, nearly every engineering office has its own computer programs for the analysis and design 

of piled rafts. Furthermore, most of the available programs under Windows are user-friendly and 

give very excellent output graphics with colors. Consequently, theoretically a secretary not an 

engineer can use them. But the problem here is how can man control the data and check the results.  

The purpose of this book is to present methods, equations, procedures and techniques used in the 

formulation of the computer analysis of piled rafts. These items are coded in the program ELPLA. 

This book contains many practical problems which are analyzed in details by using the program 

ELPLA. It is important for the engineer to be familiar with this information when carrying out 

computer analysis of piled rafts. An understanding of these concepts will be of great benefit in 

carrying out the computer analysis, resolving difficulties and judging the acceptability of the results. 

Three familiar types of subsoil models (standard models) for piled raft analyses are considered. The 

models are Simple Assumption Model, Winkler’s Model and Continuum Model. In the analysis, 

rafts are treated as elastic or rigid. In this book the Finite Element-Method was used to analyze the 

raft, in which plate bending elements represent the raft according to the two-dimensional nature of 

foundation. The development of the finite element equations for plate elements is well documented 

in standard textbooks such as Schwarz (1984) and Zienkiewicz/ Cheung (1970). Therefore, it is not 

duplicated in this book. 
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1 Models for analyzing piled raft 

1.1 Introduction 

 

This chapter describes the most common practical models used in the analysis of foundations. Piled 

raft is a raft on piles that transmits its loads to the soil. It must include often considerable moments 

and forces. In times, when there no computers were available, simplified methods were used 

considering as low as possible computation effort to receive the results with acceptable accuracy. 

The computers whose programming and memory possibilities are developed increasingly caused a 

revolution of the calculation practice. Now the programming and extensive computation effort can 

expand considerably to achieve the results as perfect as possible to the reality. These methods are 

considered particularly for the analysis of mostly deformation-sensitive large structures. 

 

The subsoil models for analysis of pile foundation (standard models) can be divided into three main 

groups: 

 

A Simple assumption model 

B Winkler's model 

C Continuum model 

 

Simple assumption model does not consider the interaction between the foundation and the soil. 

The model assumes a linear distribution of contact pressures beneath the foundation. Winkler's 

model is the oldest and simplest one that considers the interaction between the foundation and the 

soil. The model represents the soil or piles as elastic springs. Continuum model is the complicated 

one. The model considers also the interaction between all foundation elements and soil. It represents 

the soil as a layered continuum medium or isotropic elastic half-space soil medium.  

 

Although Continuum model provides a better physical representation of the supporting soil, it has 

remained unfamiliar, because of its mathematical difficulties where an application of this model 

requires extensive calculations. Practical application for this model is only possible if a computer 

program or appropriate tables or charts are available. These tables and charts are limited to certain 

problems. 

 

For this purpose, a general computerized mathematical solution based on Finite elements-method 

was developed to represent an analysis for pile foundations on the real subsoil model. The solution 

can analyze foundations of any shape considering holes within the foundation and the interaction of 

external foundations. This mathematical solution is coded in the program ELPLA. The developed 

computer program ELPLA also can analyze different types of subsoil models, especially the three-

dimensional Continuum model that considers any number of irregular layers.  

 

In this book, the three standard soil models are described through 9 different numerical calculation 

methods. The methods graduate from the simplest one to the more complicated one covering the 

analysis of most common pile foundation problems that may be found in the practice. 
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1.2 Description of the numerical calculation methods 

 

According to the three standard soil models (simple assumption model, Winkler's model, 

Continuum model), nine numerical calculation methods are considered to analyze the raft as shown 

in Figure 1-1 und Table 1-1. 

 

Table 1-1 Numerical calculation methods 
 
Method No. 

 
Method 

 
1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

 

7 

 

 

 

8 

 

 

 

9 

 
Linear contact pressure 

(Simple assumption model) 

 

Constant modulus of subgrade reaction 

(Winkler's model) 

 

Variable modulus of subgrade reaction 

(Winkler's model) 

 

Modification of modulus of subgrade reaction by iteration 

(Winkler's model/ Continuum model) 

 

Modulus of compressibility method for elastic raft on half-space soil 

medium (Isotopic elastic half-space soil medium - Continuum model) 

 

Modulus of compressibility method for elastic raft on layered soil medium  

(Solving system of linear equations by iteration) 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for elastic raft on layered soil medium  

(Solving system of linear equations by elimination) 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for rigid piled raft on layered soil 

medium 

(Layered soil medium - Continuum model) 

 

Modulus of compressibility method for rigid free-standing piled raft on 

layered soil medium  

(Layered soil medium - Continuum model) 

(elastische Schichten - Kontinuummodell) 
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Figure 1-1 Numerical calculation methods of rafts (methods 1 to 9) in program ELPLA 
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Today, the Finite elements-method is the most powerful procedure available in many complex 

problems. It can be applied to nearly all engineering problems, especially in structure analysis 

problems. In this book, the Finite elements-method is used to analyze the raft for all numerical 

calculation methods except Modulus of compressibility method for rigid piled raft on layered soil 

medium (method 8), which does not obey the elasticity rules. In the Finite elements-analysis, the 

raft is represented by rectangular plate bending elements according to the two dimensional nature of 

foundation. Each node of plate or grid elements has three degrees of freedom, vertical displacement 

w and two rotations θx and θy about x- and y-axis, respectively. The development of the finite 

element equations is well documented in standard textbooks. Therefore, it is not duplicated in this 

book. The reader can see as an example that of Zienkiewicz/ Cheung (1970) or Schwarz (1984) for 

further information on the development of finite element equations.  

 

To formulate the equations of the numerical calculation methods both the raft and the contact area 

of the supporting medium are divided into rectangular or triangular elements. Compatibility 

between the raft, piles and the soil medium in vertical direction is considered for all methods except 

Linear contact pressure method (method 1). The fundamental formulation of equilibrium equation 

for the raft can be described in general form through the following Eq. (1.1): 

 

 

     Fk p δ                                                                 (1.1) 

 

where the vector of forces {F} contains the action and reaction forces acting on the raft. In principle 

for all calculation methods, the action forces are known and equal to the applied forces on the raft, 

while the reaction forces (contact forces) are required to be found according to each soil model. 

 

According to subsoil models (Simple assumption model, Winkler's model, Continuum model), 9 

numerical calculation methods are considered to find the contact pressures, and hence to analyze the 

raft. The next pages describe the interaction between the raft and subsoil medium in these methods. 

 

1.2.1 Linear contact pressure - Simple assumption model (method 1) 

 

This method is the simplest one for determination of the pile forces. The assumption of this method 

is that there is no compatibility between the pile foundation deflection and the soil settlement. In the 

method, it is assumed that pile forces are distributed linearly on the bottom of the raft (statically 

determined) as shown in Figure 1-12, in which the resultant of soil reactions coincides with the 

resultant of applied loads. 
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Figure 1-2 Pile force distribution for Simple assumption model 

 

 

In the general case of a foundation with an arbitrary unsymmetrical shape and loading with Mx and 

My, based on Navier’s solution the pile force Pi at any point i from the geometry centroid on the 

bottom of the foundation is given by: 

 

y 
 I I I

I M  I M
 + x 

I I I

I M  I M
 + 

n

N
 = P i

xyyx

xyyyx

i

xyyx

xyxxy

i

22 






                                     (1.2) 

 

y x  = I  x  = I, y  = I ii

n

xyi

n

yi

n

x 
1

2

1

2

1

und where  

 

and:  

Pi  Force in pile i [kN] 

N Sum of all vertical applied loads on the pile cap [kN] 

xi  Coordinate of pile i from the centroidal axis x [m] 

yi  Coordinate of pile i from the centroidal axis y [m] 

Mx Moment due to N about the x-axis, Mx = N ey [kN.m] 

My Moment due to N about the y-axis, My = N ex [kN.m] 

ex Eccentricity measured from the centroidal axis x [m] 

ey Eccentricity measured from the centroidal axis y [m] 

n Number of piles under the pile cap [-] 

 

For a foundation of rectangular shape, there are two axes of symmetry and Ixy = 0. Therefore, the 

pile force Pi of Eq. (1.2) reduces to:   

 

y 
 I

 M
 + x 

I

M
 + 

n

N
 = P i

x

x
i

y

y

i                                                        (1.3) 
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For strip pile foundation, the pile forces can be obtained from: 

 

 x 
I

M
 + 

n

N
 = P i

y

y

i                                                              (1.4) 

 

while for a foundation without moments or without eccentricity about both axes the pile force Pi 

will be uniform under the foundation and is given by:  

 

  
n

N
 = Pi                                                                    (1.5) 

 

1.2.1.1 System of equations of Linear contact pressure method 

 

The foundation can be analyzed by working out the soil reactions at the different nodal points of the 

Finite elements-mesh. This is done by obtaining the pile force Pi from Eq. (1.2).  

 

Considering the entire foundation, the foundation will deflect under the action of the total external 

forces {F} due to known applied loads {P} and the known soil reactions {Q}, where: 

 

       QPF                                                               (1.6) 

 

The equilibrium of the system is expressed by the following matrix equation: 

 

        QPk p δ                                                            (1.7) 

 

where: 

{Q}   Vector of pile forces 

{P} Load vector from applied forces and moments on the foundation 

{δ} Deformation vector 

[kp] Plate stiffness matrix 

 

1.2.1.2 Equation solver of Linear contact pressure method 

 

As the plate stiffness matrix [kp] in Equation (1.7) is a diagonal matrix, the system of linear 

equations (1.7) is solved by Banded coefficients-technique. The unknown variables are the nodal 

displacements wi and the nodal rotations θxi and θyi about the x- and y-directions. 

 

1.2.2 Modulus of subgrade reaction-Winkler's model (methods 2 and 3) 

 

The oldest method for the analysis of foundation on elastic medium is the modulus of subgrade 

reaction, which was proposed by Winkler (1867). The assumption of this method is that the soil 

model or piles are represented by elastic springs as shown in Figure 1-3 according to Poulos (1994). 

The settlement si of the soil medium or the pile at any point i on the surface are directly proportional 

to the contact force or pile reaction Qi. 
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Actual pile 

Pile represented by spring 

of equivalent stiffness  

Pile load 
 

 

Figure 1-3 Simplified representation of pile for Winkler's model after Poulos (1994) 

 

 

1.2.2.1 System of equations of Modulus of subgrade reaction 

 

For a node i on the Finite elements-mesh, the contact force or the pile reaction Qi is given by: 

 

s k = Q iii
                                                                  (1.8) 

 

where: 

Qi   Contact force or the pile reaction on a node i [kN] 

ki Soil stiffness or pile stiffness at node i [kN/m] 

 

Considering the entire foundation, Eq. (1.8) can be rewritten in matrix form as: 
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Eq. (1.9) is rewritten in a simple form as: 

 

      sk = Q s                                                              (1.10) 

 

where: 

{Q}   Vector of contact forces and pile reactions 

{s} Settlement vector 

[ks] Stiffness matrix of the soil and piles 

 

The foundation will deflect under the action of the total external forces {F} due to known applied 

loads {P} and the unknown soil reactions {Q}, where: 

 

       QPF                                                            (1.11) 

 

The equilibrium of the raft-pile-soil system is expressed by the following matrix equation: 

 

       QP = k p δ                                                         (1.12) 

 

Eq. (1.10) for Winkler’s model can be substituted into Eq. (1.12) as: 

 

        s k - P =  k sp δ                                                        (1.13) 

 

Considering the compatibility of deformation between the plate and the soil medium, where the soil 

settlement si is equal to the plate deflection wi, Eq. (1.13) becomes: 

 

        P =  k+k sp δ                                                        (1.14) 

 

Equation (1.14) shows that the stiffness matrix of the whole raft-pile-soil system is the sum of the 

plate and the soil stiffness matrices, [kp] + [ks]. 

 

1.2.2.2 Equation solver of Modulus of subgrade reaction 

 

It should be noticed that the soil stiffness matrix [ks] is a purely diagonal matrix for Winkler’s 

model (methods 2 and 3). Therefore, the total stiffness matrix for the plate and the soil is a banded 

matrix. Then, the system of linear equations (1.14) is solved by Banded coefficients-technique. 

Since the total stiffness matrix is a banded matrix, the equation solver (1.14) takes short 

computation time by applying these methods 2 and 3. 

 

The unknown variables in Eq. (1.14) are the nodal displacements wi (wi = si) and the nodal rotations 

θxi and θyi about x- and y-directions. After solving the system of linear equation (1.14), substituting 

the obtained settlements si in Eq. (1.10), gives the unknown contact forces and pile reactions Qi. 
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1.2.3 Modulus of compressibility method - Continuum model (methods 4 to 9) 

 

Continuum model was first proposed by Ohde (1942), which based on the settlement will occur not 

only under the loaded area but also outside. Otherwise, the settlement at any nodal point is affected 

by the forces at all the other nodal points. Figure 1-4 shows Continuum model applied for pile 

foundation according to Liang/ Chen (2004). 

Continuum model assumes continuum behavior of the soil, where the soil is represented as isotropic 

elastic half-space medium or layered medium. Consequently, this model overcomes the assumption 

of Winkler’s model, which does not take into account the interaction between the different points of 

the soil medium. Representation of soil as a continuum medium is more accurate as it realized the 

interaction among the different points of the continuum medium. However, it needs mathematical 

analysis that is more complex. 

 

 

Figure 1-4 Continuum model after Liang/ Chen (2004) 

 

 

1.2.3.1 Methods for analyzing piled raft for Continuum model 

 

The behavior of the pile-soil system can be examined by considering linearly or nonlinearly 

analysis according to the following three different methods: 

 

 Linear analysis of piled raft, termed LPR 

 Nonlinear analysis of piled raft using hyperbolic function, termed NPRH 

 Nonlinear analysis of piled raft using DIN 4014, termed NPRD 

 

The next chapters describe methods for analyzing piled raft for Continuum model. 
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1.3 Test example: Verifying forces in piles of a pile group 

 

The numerical modeling described in this chapter was implemented in the program ELPLA. To 

verify and evaluate the numerical modeling, a comparison was carried out, in which results from 

ELPLA were compared with those from existing methods of analysis. 

 

1.3.1 Description of the problem 

 

To verify the mathematical model of ELPLA for determining pile forces of pile groups under a pile 

cap, results of a pile group obtained by Bakhoum (1992), Example 5.19, page 592 are compared 

with those obtained by ELPLA. 

 

A pile cap on 24 vertical piles is considered as shown in Figure 1-5. It is required to determine the 

force in each pile of the group due to a vertical load of N = 8000 [kN] acting on the pile cap with 

eccentricities ex = 1.4 [m] and ey = 1.8 [m] in both x- and y-directions. 

 

3.8  

P = 8000 [kN]

1.6*4 = 6.4 [m]

o

y

x

1.21.4

 

 

Figure 1-5 Pile cap dimensions and pile arrangements 
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1.3.2 Hand calculation of pile forces 

 

According to Bakhoum (1992), the force in each pile in the pile group can be obtained by hand 

calculation as follows: 

 

Step 1: Compute moments 
 

 M

 *  = M

y

x

]m.kN[ 11200 = 1.4 * 8000 = 

 

]m.kN[ 144008.18000 

                                              (1.15) 

 

Step 2: Compute properties Ix, Iy and Ixy 
 

Determining properties of Ix, Iy and Ixy are listed in Table 1-2. 
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Table 1-2 Properties Ix, Iy and Ixy 
 
Pile 

number 

 
xi 

[m] 

 
yi 

[m] 

 
xi

2 

[m2] 

 
yi

2 

[m2] 

 
xi yi 

[m2] 
 

1 
 

-3.8 
 

-3.4 
 

14.44 
 

11.56 
 

12.92 
 

2 
 

-2.2 
 

-3.4 
 

4.84 
 

11.56 
 

7.48 
 

3 
 

-0.6 
 

-3.4 
 

0.36 
 

11.56 
 

2.04 
 

4 
 

1.0 
 

-3.4 
 

1.00 
 

11.56 
 

-3.40 
 

5 
 

2.6 
 

-3.4 
 

6.76 
 

11.56 
 

-8.84 
 

6 
 

-3.8 
 

-1.8 
 

14.44 
 

3.24 
 

6.84 
 

7 
 

-2.2 
 

-1.8 
 

4.84 
 

3.24 
 

3.96 
 

8 
 

-0.6 
 

-1.8 
 

0.36 
 

3.24 
 

1.08 
 

9 
 

1.0 
 

-1.8 
 

1.00 
 

3.24 
 

-1.08 
 

10 
 

2.6 
 

-1.8 
 

6.76 
 

3.24 
 

-4.68 
 

11 
 

-3.8 
 

-0.2 
 

14.44 
 

0.04 
 

0.76 
 

12 
 

-2.2 
 

-0.2 
 

4.84 
 

0.04 
 

0.44 
 

13 
 

-0.6 
 

-0.2 
 

0.36 
 

0.04 
 

0.12 
 

14 
 

1.0 
 

-0.2 
 

1.00 
 

0.04 
 

-0.20 
 

15 
 

2.6 
 

-0.2 
 

6.76 
 

0.04 
 

-0.52 
 

16 
 

-0.6 
 

1.4 
 

0.36 
 

1.96 
 

-0.84 
 

17 
 

1.0 
 

1.4 
 

1.00 
 

1.96 
 

1.40 
 

18 
 

2.6 
 

1.4 
 

6.76 
 

1.96 
 

3.64 
 

19 
 

-0.6 
 

3.0 
 

0.36 
 

9.00 
 

-1.80 
 

20 
 

1.0 
 

3.0 
 

1.00 
 

9.00 
 

3.00 
 

21 
 

2.6 
 

3.0 
 

6.76 
 

9.00 
 

7.80 
 

22 
 

-0.6 
 

4.6 
 

0.36 
 

21.16 
 

-2.76 
 

23 
 

1.0 
 

4.6 
 

1.00 
 

21.16 
 

4.60 
 

24 
 

2.6 
 

4.6 
 

6.76 
 

21.16 
 

11.96 
 

3 
 
Iy = 106.56 

 
Ix = 170.56 

 
Ixy = 43.2 
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Step 3: Compute pile force 
 

The force Pi in any pile i at location (xi, yi) from the geometry centroid is obtained from: 

 

 y  + x  + = P

 

y +x + = P

 

y 
I  I I

I M  I M
 + x 

I  I I

I M  I M
 + 

n

N
 = P

iii

iii

i

xy

2

yx

xyyyx

i

xy

2

yx

xyxxy

i

64.42178.988 333.333

(43.2)-06.56)(170.56)(1

.2)(11200)(43-6.56)(14400)(10

(43.2)-06.56)(170.56)(1

.2)(14400)(43-0.56)(11200)(17

24

8000
22









       (1.16) 

 

 

1.3.3 Pile forces by ELPLA 
 

The available method "Linear Contact pressure 1" in ELPLA is used to determine the force in each 

pile in the pile group. A net of equal square elements is chosen. Each element has a side of 1.6 [m]. 

The pile forces obtained by ELPLA are compared with those obtained by Bakhoum (1992) in Table 

1-3. It is obviously from this table that pile forces obtained by ELPLA are equal to those obtained 

by hand calculation. 
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Table 1-3 Comparison of pile forces obtained by ELPLA and those of Bakhoum (1992) 
 
Pile 

number 

 
Bakhoum (1992) 

 
ELPLA 

 

 
xi 

[m] 

 
yi 

[m] 

 
N/n 

[kN] 

 
78.988 xi 

[kN] 

 
64.421 yi 

[kN] 

 
Pi 

[kN] 

 
Pi 

[kN] 
 

1 
 

-3.8 
 

-3.4 
 
333.33 

 
-300.16 

 
-219.03 

 
-185.86 

 
-185.85 

 
2 

 
-2.2 

 
-3.4 

 
333.33 

 
-173.77 

 
-219.03 

 
-59.47 

 
-59.47 

 
3 

 
-0.6 

 
-3.4 

 
333.33 

 
-47.39 

 
-219.03 

 
66.91 

 
66.91 

 
4 

 
1.0 

 
-3.4 

 
333.33 

 
78.99 

 
-219.03 

 
193.29 

 
193.29 

 
5 

 
2.6 

 
-3.4 

 
333.33 

 
205.37 

 
-219.03 

 
319.67 

 
319.67 

 
6 

 
-3.8 

 
-1.8 

 
333.33 

 
-300.16 

 
-115.96 

 
-82.79 

 
-82.78 

 
7 

 
-2.2 

 
-1.8 

 
333.33 

 
-173.77 

 
-115.96 

 
43.50 

 
43.60 

 
8 

 
-0.6 

 
-1.8 

 
333.33 

 
-47.39 

 
-115.96 

 
169.98 

 
169.98 

 
9 

 
1.0 

 
-1.8 

 
333.33 

 
78.99 

 
-115.96 

 
296.36 

 
296.36 

 
10 

 
2.6 

 
-1.8 

 
333.33 

 
205.37 

 
-115.96 

 
422.74 

 
422.72 

 
11 

 
-3.8 

 
-0.2 

 
333.33 

 
-300.16 

 
-12.88 

 
20.29 

 
20.29 

 
12 

 
-2.2 

 
-0.2 

 
333.33 

 
-173.77 

 
-12.88 

 
146.68 

 
146.67 

 
13 

 
-0.6 

 
-0.2 

 
333.33 

 
-47.39 

 
-12.88 

 
273.06 

 
273.06 

 
14 

 
1.0 

 
-0.2 

 
333.33 

 
78.99 

 
-12.88 

 
399.44 

 
399.44 

 
15 

 
2.6 

 
-0.2 

 
333.33 

 
205.37 

 
-12.88 

 
525.82 

 
525.82 

 
16 

 
-0.6 

 
1.4 
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2 Numerical modeling single pile, pile groups and piled raft 

2.1 Introduction 

 

Analyzing piled raft is a complex task because it is a three-dimensional problem including many 

capabilities. The main capabilities that must be considered in the analysis are: the interaction 

between all piled raft and soil elements, taking into account the actual loading and geometry of 

the piled raft, representing the soil by a real model and treating the problem as nonlinear 

analysis. Considering all these capabilities requires great experience and effort. Besides, such a 

problem requires long computational time where huge size soil matrix is required for a large 

piled raft due to discretized nodes along piles and under the raft. For this reason many authors 

suggested simplified methods in recent years to reduce the size of analysis. 

 

Clancy/ Randolph (1993) and (1994) developed the hybrid layer method to reduce the 

computing effort. Ta/ Small (1997) approximated the surface displacement of the soil by a 

polynomial instead of generating flexibility factors, but the rafts have to be square and of equal 

size. Russo (1998) presented an approximate numerical method for the analysis of piled raft 

where piles were modeled as interactive linear or non-linear springs. He used the interaction 

factor method and a preliminary BEM to model pile to pile interaction. Poulos (1999) described 

an approximate analysis for the response of a pile group. The analysis uses a simplified form of 

boundary element analysis to obtain single pile responses and interaction factors, and employs 

various simplifying assumptions to facilitate the computational process. Lee/ Xiao (2001) 

presented a simplified analytical method for nonlinear analysis of the behavior of pile groups 

using a hyperbolic approach to describe the nonlinear relation between the shaft stress and 

displacement. They developed the method for pile groups under both rigid and flexible pile cap 

based on the load-transfer function. Kitiyodom/ Matsumoto (2002) and (2003) developed a 

simplified method of numerical analysis of piled raft using a hybrid mode. The raft is modeled 

as a thin plate, the piles as elastic beams and the soil as springs. Mendonça/ Paiva (2003) 

presented BEM/ FEM formulation for the analysis of piled raft in which each pile is represented 

by a single element with three nodal points and the shear force along the shaft is approximated 

by a quadratic function. The soil is considered as half-space medium. Jeong et al. (2003) 

proposed a simple algorithm to analyze laterally loaded three-dimensional pile groups using 

beam column method. Liang/ Chen (2004) presented a modified variational approach for 

analyzing piled raft by a simplified analytical solution to evaluate the pile-soil interaction. They 

applied the approach on piled rigid and flexible rafts resting on homogeneous soil. Wong/ Poulos 

(2005) developed approximations for the settlement interaction factors between dissimilar piles 

via an extensive parametric study. Lutz et al. (2006) presented a simple method to estimate the 

load settlement behavior of piled raft based on the theory of elasticity and solutions for 

calculation of ultimate limit state. Most of the simplified analyses carried out by the methods 

mentioned previously approximated the soil model. However, several methods are available for 

analyzing this complex problem by a full three-dimensional analysis but they are time 

consuming even for fast computers of today. 
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In standard methods of analyzing piled raft based on elasticity theory, the entire soil stiffness 

matrix of the piled raft is assembled due to all elements of piles and raft. Then, settlements of 

piled raft elements are obtained directly by solving the global equations. Based on elasticity 

theory El Gendy (2007) presented more efficient analysis of single pile, pile group and piled raft 

by using composed coefficient technique to reduce the size of entire soil stiffness matrix. In the 

technique, the pile is treated as a rigid member having a uniform settlement on its nodes. This 

assumption enables to assemble pile coefficients in composed coefficients. It can be easily 

modeling the nonlinear response of single pile, pile groups or piled raft. The composed 

coefficient technique makes the size of the soil stiffness matrix of the piled raft equivalent to that 

of the raft alone without piles. The proposed analysis reduces considerably the number of 

equations that need to be solved. Raft can be analyzed as flexible, rigid or elastic on continuum 

soil medium. The advantage of the analysis is that there is no approximation when generating the 

flexibility coefficients of the soil. In the analysis a full interaction among piled raft elements is 

taken into account by generating the entire flexibility matrix of the piled raft. Using the 

composed coefficient technique enables to apply the nonlinear response of the pile by a 

hyperbolic relation between the load and settlement of the pile. El Gendy (2007) introduced also 

a direct hyperbolic function for nonlinear analysis of a single pile. Besides, an iteration method 

is developed to solve the system of nonlinear equations of pile groups or piled raft. This chapter 

presents numerical modeling single pile, pile groups and piled raft according to El Gendy (2007). 
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2.2 Modeling single pile 

 

To carry out the analysis, a composed coefficient or modulus ks [kN/m] representing the linear 

soil stiffness of the pile is determined. The modulus ks is a parameter used in both linear and 

nonlinear analysis of the pile. It is defined as the ratio between the applied force on the pile head 

Ph [kN] and the pile settlement wo [m]. The modulus ks is not a soil constant, it depends on pile 

load, pile geometry and stratification of the soil. It is analogous to the modulus of subgrade 

reaction of the raft on Winkler’s soil medium (Winkler (1867)), which is the ratio between the 

average contact pressure and the settlement under the characteristic point on the raft. This 

section describes a method to obtain the modulus ks from the rigid analysis of the pile. 

 

2.2.1 Soil flexibility for single pile 

 

In the analysis, the pile is divided into a number of shaft elements with m nodes, each acted upon 

by a uniform shear stress qsj [kN/m2] and a circular base having a uniform stress qb [kN/m2] as 

shown in Figure 2-1a. To carry out the analysis, pile shaft elements are represented by line 

elements as indicated in Figure 2-1b. All stresses acting on shaft elements are replaced by a 

series of concentrated forces acting on line nodes. The shear force on node j may be expressed 

as: 

 

j

jj

oj qs
ll

rQs
2

 π2
1 




                                                 (2.1) 

 

while the force on the pile base may be expressed as: 

 

qbrQb o

2 π                                                          (2.2) 

 

where: 

j - 1 and j  Node number of element j 

Qsj  Shear force on node j [kN] 

Qb  Force on the base [kN] 

ro Radius of the pile [m] 

lj Length of the element j [m] 

 

To consider the interaction between pile and soil, the soil is represented as layered medium or 

isotropic elastic half-space medium. Considering a typical node i as shown in Figure 2-1b, the 

settlement si of the soil adjacent to the node i due to shear forces Qsj on all m nodes and due to 

the base force Qb is expressed as: 

 

Qb f + Qs f  = s
b i,jj i,

m

j

i 
1=

                                                     (2.3) 

where: 

fi, j  Flexibility coefficient of node i due to a unit shear force on a node shaft j [m/kN] 

fi, b  Flexibility coefficient of node i due to a unit force on the base b [m/kN] 

 



Numerical modeling single pile, pile groups and piled raft 

 

 

2-6 

j

Ground surface

lj

zj

a

1qs1

qsj

ph

qb

b

j

j-1

2

1

2zj-1

6

j

4

3

2

1

(lj-1+lj)/2

Ph

Qn

n

Q1

Q2

Qj

a

2

a) Pile shaft elements b) Pile line elements

2ro

i

j

1

 
 

 

Figure 2-1 Pile geometry and elements 

 

 

As a special case of Eq. (2.3) and by changing the index i to b, the settlement of the base sb may 

be expressed as: 

 

Qb f + Qs f  = s
b b,jj b,

m

j

b 
1=

                                                     (2.4) 

 

where: 

fb, j  Flexibility coefficient of the base b due to a unit shear force on a node shaft j [m/kN] 

fb, b  Flexibility coefficient of the base b due to a unit force on the base b [m/kN] 

 

Equations (2.3) and (2.4) for the settlement of the soil adjacent to all nodes of the pile may be 

rewritten in general form as: 

 

Q I  = w
jj i,

n

j

i 
1=

                                                             (2.5) 
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where: 

Qj  Contact force on node j [kN]. Qj represents the shear forces Qsj on the shaft nodes or a 

base force Qb 

wi  Settlement on node i [m]. wi represents the settlement sj on a shaft node j or settlement sb 

on the base 

n Total number of contact nodes, n = m + 1 

Ii, j  Flexibility coefficient of node i due to a unit force on node j [m/kN]. Ii, j represents the 

coefficient fi, j, fi, b, fb, j or fb, b. These coefficients can be evaluated from elastic theory 

using Mindlin’s solution. Closed form equations for these coefficients are described in 

the next paragraph 

 

2.2.2 Determining flexibility coefficients 

 

In 1936 Mindlin presented a mathematical solution for determining stresses and displacements in 

soil due to a point load acting beneath the surface of semi-infinite mass. The solution is often 

employed in the numerical analysis of piled foundations and may have other applications in 

geotechnical engineering such as study the interaction between foundations and ground anchors 

or buried structures. 

 

Pioneer authors of piled raft such as Poulos/ Davis (1968) and Butterfield/ Banerjee (1971) 

integrated numerically coefficients of flexibility using Mindlin’s solution (Mindlin (1936)). 

Analysis of piled raft using integrated numerical coefficients leads to significant computations, 

especially in large pile group problems. An analytical derivation of coefficients of flexibility 

using Mindlin’s solution is presented. 

 

2.2.2.1 Flexibility coefficient fi, b of a node i due to a unit force on the base b 

 

To avoid the significant computations when applying Mindlin’s solution to determine the 

flexibility coefficients for nodes located outside the base, circular load at the base is replaced by 

an equivalent point load. In this case the flexibility coefficient can be obtained directly from 

Mindlin’s solution for determining the displacement wij [m] at point i due to a point load Qj [kN] 

acting at point j beneath the surface of a semi-infinite mass (Figure 2-2). According to Mindlin’s 

solution the displacement wij can be expressed as: 

 

Q f = w jijij                                                             (2.6) 

 

where fij is given by Mindlin’s solution as: 
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
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R

 
 + 

R

 
 

  G 
 = f

s

sss

ss

ij

5
2

2

3
2

2

3
1

2

2

2

1

)(62-)( )ν 4 - (3)(

)ν4 - (3 - )ν- (1 8ν4 - 3

)ν- (1 π16

1

                              (2.7) 

 

where: 

and ) + ( +  =   ,)(
22

2

22
1 czrRc -z  + r = R  
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c Depth of the point load Qj [kN] from the surface [m] 

z  Depth of the studied point i from the surface [m] 

r  Radial distance between points i and j [m] 

z-c  Vertical distance between points i and j [m] 

z+c  Vertical distance between points i and k [m] 

fij Displacement factor of point i due to a unit load at point j [m/kN] 

Gs Shear modulus of the soil [kN/m2] 

)ν+ (1 2 s

s
s

 

E
= G  

Es Modulus of elasticity of the soil [kN/m2] 

νs Poisson’s ratio of the soil [-] 

 

 

 

Figure 2-2 Geometry of Mindlin's problem 

 

 

Now, the flexibility coefficient fi, b [m/kN] of node i due to a unit force Qb = 1 [kN] acting on the 

base b is equal to the displacement factor fij. In Eq (2.7), r is the radial distance between the pile 

of point i and the pile of the base b. For the pile of the studied base b, r is equal to the radius of 

the base ro. 
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2.2.2.2 Flexibility coefficient fb, b of the base b due to a unit force on the base itself 

 

The base b of the pile has a circular loaded area of radius ro [m] and a uniform load q = Qb / π ro
2 

[kN/m2] as shown in Figure 2-3. The flexibility coefficient fb, b [m/kN] at the base center b due to 

a unit load Qb = 1 [kN] at the base itself can be obtained from: 

 


or

ij

o

b b,
d dr r f 

r 
 = f

0

2π

02
θ

π

1
                                                (2.8) 

 

The integration of the flexibility coefficient can be obtained analytically as: 
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           (2.9) 

 

 

The flexibility coefficient fb, b may be multiplied by a factor π/4 to take the effect of base rigidity. 

This factor is the ratio of the surface displacement of a rigid circle on the surface of a half-space 

to the center displacement of a corresponding uniformly loaded circle. 
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Figure 2-3 Geometry of circular loaded area for finding displacement at the center 
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2.2.2.3 Flexibility coefficient fi, j of node i due to a unit shear force on a node shaft j 

 

To avoid the significant computations when applying Mindlin’s solution to determine the 

flexibility coefficients due to shaft stress, the shaft stress is replaced by an equivalent line load. 

The shaft element j of the pile has a length l [m] and a line load T = Qj / l [kN/m] as shown in 

Figure 2-4. The flexibility coefficient fi, j [m/kN] at the point i due to a unit load Qj = 1 [kN] at a 

shaft element j can be obtained from: 

 

 dc f 
l

1
 = f

l

l ijj i, 
2

1

                                                        (2.10) 

 

The integration yields to: 
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where terms I1 to I5 are given by: 
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where: 

l1  Start depth of the line load T or the shear stress τ from the surface [m] 

l2  End depth of the line load T or the shear stress τ from the surface [m] 

l  Length of the line load T or the shear stress τ [m] 

r1  Radial distance between point i and j [m] 
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Figure 2-4 Geometry of the line load 

 

 

2.2.2.4 Flexibility coefficient fb, j of the base b due to a unit shear force on a node shaft j 

 

The base b of the pile has a radius ro [m], while the shaft element j has a length l [m] and a shear 

stress τ = Qj / 2 π ro l [kN/m2] as shown in Figure 2-5. The flexibility coefficient fb, j [m/kN] at 

the base center b due to a unit load Qj = 1 [kN] at a shaft element j can be obtained from: 
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The integration yields to: 
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Replacing r1 by ro in Eqns (2.12) to (2.16) gives terms J1 to J5. 

 

 



Numerical modeling single pile, pile groups and piled raft 

 

 

2-12 

a) Elevation

b) Plan

ro

dp



d

wi

i

Ground surface

c

c

z
j

dc

l1

l2


l

 
Figure 2-5 Geometry of cylindrical surface stress for finding the displacement at the 

center 

 

 

2.2.2.5 Multi-layered soil 

 

Flexibility coefficients described previously can be applied only for isotropic elastic half-space 

soil medium. For finite layer, flexibility coefficients may be obtained as described by Poulos/ 

Davis (1968). As an example, for a point k in a layer of depth h, the flexibility coefficient is 

then: 

 

      f - f = hf j h,j k,j k,
                          (2.19) 

where: 

fk, j(h) Flexibility coefficient for a point k in a layer of depth h due to a unit load on point j 

[m/kN] 

fk, j(∞) Flexibility coefficient for a point k due to a unit load on point j in a semi-infinite mass 

[m/kN] 

fh, j(∞) Flexibility coefficient for a point within the semi-infinite mass directly beneath k, at a 

depth h below the surface due to a unit load on point j [m/kN] 

 

 

 

 

 

 



Chapter 2 

 

 

 2-13 

2.2.3 Elastic analysis of single pile 

2.2.3.1 Soil settlement 

 

Equation (2.5) for settlements of the soil adjacent to all nodes of the pile may be written in a 

matrix form as: 

                          Q Is = w                                                           (2.20) 

 

where: 

{w} n settlement vector 

{Q} n contact force vector 

[Is] n * n soil flexibility matrix 

 

Inverting the soil flexibility matrix in Eq. (2.20), leads to: 

 

                          w ks = Q                                                           (2.21) 

 

where [ks] is n * n soil stiffness matrix, [ks] = [Is]-1. 

 

Equation (2.21) may be modified as: 
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                                  (2.22) 

 

Equation (2.22) is rewritten in a compacted matrix form as: 

 

                          s ke = Qs                                                            (2.23) 

 

where: 

{s} n + 1 settlement vector, {s} = {o, s1, s2, s3,…, sn, sb}T 

{Qs} n + 1vector of contact forces on the pile, {Q} = {o, Qs1, Qs2, Qs3,…, Qsn, Qb}T 

 [ke]  n + 1 * n + 1 soil stiffness matrix 

 

2.2.3.2 Pile displacement 

 

The finite element method is used for analyzing the pile. Only the axial compression of the pile 

is considered in determining displacements of pile elements. The beam stiffness matrix of the 

pile element i can be expressed as: 

 

                          
l

ApEp
= kp

i

i

i 




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

11
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                                                (2.24) 

 



Numerical modeling single pile, pile groups and piled raft 

 

 

2-14 

where: 

Ep Modulus of Elasticity of the pile material [kN/m2] 

Api Cross-section area of the pile element i [m2] 

li Length of the pile element i [m] 

 

According to the principal of the finite element method, the assembled axial stiffness matrix 

equation for the pile can be written as: 

 

                            Qs P = kp δ                                                        (2.25) 

 

where: 

{δ} n + 1 Displacement vector 

{P} n + 1 vector of applied load on the pile, {P} = {Ph, o, o, o,…, o}T 

 [kp] n + 1 * n + 1 beam stiffness matrix 

 

Substituting Eq. (2.23) in Eq (2.25) leads to: 

 

                            ske P = kp ][δ                                                        (2.26) 

 

Assuming full compatibility between pile displacement δi and soil settlement si, the following 

equation can be obtained: 

 

                             P = kekp δ                                                        (2.27) 

 

Solving the above system of linear equations gives the displacement at each node, which is equal 

to the soil settlement at that node. Substituting soil settlements from Eq. (2.27) in Eq. (2.23), 

gives contact forces on the pile. 

 

2.2.4 Rigid analysis of single pile 

 

For a rigid pile, the settlement will be uniform. Therefore, the unknowns of the problem are n 

contact forces Qj and the rigid body translation wo. The derivation of the uniform settlement for 

the rigid pile can be carried out by equating the settlement wi in Eq. (2.5) by a uniform 

translation wo at all nodes on the pile. Expanding Eq. (2.5) for all nodes yields to: 
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Contact forces can be written as a function in terms ki, j of the soil stiffness matrix [ks] as: 
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Carrying out the summation of all contact forces leads to: 

 

k woQ j i,

n

j=

n

=i

i

n

=i

  = 
111

                                                     (2.30) 

 

Equation (2.30) may be rewritten as: 

 

 woks = Ph                                                                      (2.31) 

 

where the applied force Ph [kN] is the sum of all contact forces Qi: 

 

Q = Ph i

n

i


1=

                                                               (2.32) 

 

while the composed coefficient ks [kN/m] is the sum of all coefficients of the soil stiffness 

matrix [ks]: 

 

k  = ks j i,

n

j=

n

=i


11

                                                            (2.33) 

 

Eq. (2.31) gives the linear relation between the applied load on the pile head and the uniform 

settlement wo, which is analogous to Hook’s law. Therefore, the composed coefficient ks may be 

used to determine the total soil stiffness adjacent to the pile. In case of analysis of a single pile, it 

is easy to determine the contact forces Qi. Substituting the value of wo from Eq. (2.31) in Eq. 

(2.29) gives Eq. (2.34) in n unknown contact forces Qi as: 

 

ks

k Ph

 = Q

j i,

n

j=

i


1

                                                             (2.34) 

 

Equation (2.34) of contact forces on the rigid pile is found to be independent on the Modulus of 

elasticity of the soil Es in case of isotropic elastic half-space soil medium. 
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2.3 Modeling pile groups (free-standing rigid raft) 

 

The composed coefficient technique is first used to perform a linear analysis of pile groups. 

Then it is extended to include the nonlinearity effect. The next paragraphs present the 

formulation of composed coefficients for pile groups to generate a soil stiffness matrix of 

composed coefficients. 

 

2.3.1 Soil stiffness for pile groups 

 

Deriving equations for free-standing raft on piles requires taking into account the interaction 

effect among the pile groups. For doing that, the simple free-standing raft on pile groups shown 

in Figure 2-6 as an example is considered, having np = 4 piles and total nodes of n = 23.  

 

The relation between pile settlement and contact force on pile groups shown in Figure 2-6 can be 

expressed in matrix form as: 
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(2.35) 

 

Inverting the total flexibility matrix in Eq. (2.35), gives the total soil stiffness matrix of the 

system of the pile groups as: 
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(2.36) 

where ki, j  [kN/ m] is stiffness coefficient of the soil stiffness matrix. 

 

Due to the high rigidity of the pile in its length direction, the settlement in every pile itself is 

considered as uniform. This assumption can establish the relationship between the uniform pile 

settlement and the force on the pile head in the pile groups. It can be done by equating all 

settlements in each pile by a uniform settlement. 

 

Carrying out the summation of rows and columns corresponding to pile i in Eq. (2.36) leads to: 
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Figure 2-6 Modeling free-standing raft on pile groups 
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Accordingly, Eq. (2.37) can be rewritten for the simple pile groups in Figure 2-6 in composed 

coefficients as: 
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where: 

woi  Settlement in pile i [m] 

Ki, j  Composed coefficient [kN/m]. In general  
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2.3.2 Analysis of pile groups 

 

In general case of a completely rigid raft, the linear settlement of the raft at any point is defined 

by the vertical displacement wc of the center and by two rotations θx and θy about x-and y-axes, 

respectively. The settlement of the pile i, having coordinates xi and yi referred to the center, must 

be compatible with the raft settlement at that point. Determining values of displacement wc and 

rotations θx and θy allows to find the unknown pile head forces and settlements. 

 

2.3.2.1 Case of uniform settlement (ex = 0 and ey = 0)  

 

For a free-standing raft with a centric load, the settlement will be uniform. Therefore, unknowns 

of the problem are reduced to np pile head forces Phi and the rigid body translation wc on all 

piles. The derivation of the uniform settlement for the rigid free-standing raft can be carried out 

by equating the settlement woi by a uniform translation wc at all piles in the pile groups. 

Expanding Eq. (2.38) for all piles yields to:  
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Carrying out the summation of all forces on pile heads, leads to: 

K wcPh j i,
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ppp

  =                                                   (2.40) 

 

Equation (2.40) may be rewritten in a simple form as: 

 

 wcKs = N                                                             (2.41) 

 

where the resultant force N is the sum of all forces Phi on pile heads: 

 

Ph = N i

n

1=i

p

                                                             (2.42) 

 

while the modulus Ks is the sum of all terms Ki, j: 

 

K  = Ks j i,

n

1=j

n

1=i

pp

                                                             (2.43) 

 

Equation (2.41) gives the linear relation between the applied resultant force N on the pile groups 

and the uniform settlement wc, which is analogous to Hook’s low. The modulus Ks is the total 

soil stiffness of the pile groups. 

 

Substituting the value of wc in Eq. (2.39), gives Eq. (2.44) in np unknown pile head forces Phi. 

K  wc= Ph j i,

n

1=j

i

p

                                                             (2.44) 

 

Equation (2.44) represents the linear relation between the force on the pile head and its 

settlement in the pile groups and can be rewritten in a simplified form as: 

 

 wcks = Ph ii                                                             (2.45) 

where ksi [kN/m] is the Modulus of soil stiffness adjacent to the pile i in the pile groups. It is 

given by: 

K = ks j i,

n

j=1

i

p

                                                             (2.46) 

 

2.3.2.2 Case of single eccentric load (ex ≠ 0) 

 

Due to the raft rigidity, the following linear relation expresses the settlement woi at a pile i that 

has a distance xi from the geometry centroid in the case of single eccentric load in x-axis: 

 

θtan yii   x +  wc= wo                                                       (2.47) 

 

where θy [Grad] is the rotation angle of the raft about y-axis. 
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Similarly to the procedures of derivation wc, the expansion of forces on pile heads in Eq. (2.39) 

becomes:  
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                     (2.48) 

 

Multiplying both sides of a row i in Eq. (2.48) by xi, gives the following system of linear 

equations: 
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To eliminate the contact forces from Eq. (2.49), carry out the summation of all Phi xi as follows: 

 

wo K x xPh jj i,

n

j=1

i

n

=1i

ii

n

=1i

ppp

 =                                                (2.50) 

 

Substituting Eq. (2.47) in Eq. (2.50) gives: 

 

 θtan yjj i,

n

j=1

i

n

=1i

ii

n

=1i

  x + wc K x xPh

ppp

 =                                      (2.51) 

 

But the moment due to resultant N about the y-axis must be equal to the sum of moments due to 

forces on pile heads Phi about that axis: 

 

xPh = x Ph +...+ x Ph + x Ph + x Ph = e N ii

n

=1i

nn332211x  
p

pp                        (2.52) 
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Substituting Eq. (2.51) in Eq. (2.52) eliminates the forces on pile heads from Eq. (2.52) and 

gives the rigid rotation θy about y-axis from: 

 

x K x 

K x   wc- e N

 =  

jj i,

n

j=1

i

n

=1i

j i,

n

j=1

i

n

=1i

x

y
pp

pp




θtan                                             (2.53) 

 

Substituting the value of tan θy in Eq. (2.47) gives the np unknown settlements woi. Then, 

substituting the value of woi in Eq. (2.48), gives the np unknown forces on pile heads Phi: 

 

K x    + K  wc= Ph j i,i

n

j=1

yj i,

n

j=1

i

pp

 θtan                                          (2.54) 

 

The stiffness ksi of the soil adjacent to the pile i in the pile group is given by: 

θtan yi

i
i

  x + wc

Ph
 = ks                                                     (2.55) 

 

2.3.2.3 Case of single eccentric load (ey ≠ 0) 

 

The settlement woi at pile i that has a distance yi from the geometry centroid in the case of single 

eccentric load in y-axis is given by: 

 

θtan xii   y +  wc= wo                                                     (2.56) 

 

The derivation of the free-standing rigid raft in the case of an eccentric load in y-axis can be 

carried out in a similar manner to the above procedures, which leads to the following Eq. (2.57) 

in the rotation θx about x-axis:   

 

y K y 

K y   wc- e N

 =  

jj i,

n

j=1

i

n

=1i

j i,

n

j=1

i

n

=1i

y

x
p

pp




θtan                                            (2.57) 

 

while the force on the pile head is given by: 

 

K y    + K  wc= Ph j i,i

n

j=1

xj i,

n

j=1

i

pp

 θtan                                         (2.58) 

 

and the soil stiffness ksi adjacent to the pile i in the pile groups is given by: 

 

θtan xi

i
i

  y + wc

Ph
 = ks                                                     (2.59) 
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General case of double eccentric load (ex ≠ 0 and ey ≠ 0) 
 

The settlement woi in the general case of an eccentric load at any pile i that has coordinates xi 

and yi from the geometry centroid is given by: 

 

θtanθtan xiyii   y +   x +  wc= wo                                           (2.60) 

 

while the force on the pile head is given by:  

 

K y    + K x    + K  wc= Ph j i,i

n

j=1

xj i,i

n

j=1

yj i,

n

j=1

i

ppp

 θtanθtan                            (2.61) 

 

and the soil stiffness ksi adjacent to the pile i in the pile groups is given by: 

 

θtanθtan xiyi

i
i

  y +   x + wc

Ph
 = ks                                              (2.62) 

 

Once settlements woi on piles are determined, the contact forces along the pile shaft and on the 

pile base can be obtained from Eq. (2.35). 
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2.4 Modeling piled raft 

2.4.1 Soil stiffness for piled raft 

 

For a complete analysis of piled raft foundation, pile-soil-raft and raft-soil-raft interactions must 

be taken into account in addition to pile-soil-pile interaction. To illustrate how to formulate the 

composed coefficient technique for piled raft, the simple piled raft shown in Figure 2-7 is 

considered, having np = 4 piles and a total npr = 33 contact nodes of raft and piles with the soil. If 

the raft is analyzed alone without piles, the number of its nodes will be nr = 14. In the analysis, 

the contact area is divided for the raft into triangular and/ or rectangular elements, while that for 

pile shafts into cylindrical elements and that for pile bases into circular elements. The contact 

pressure under the raft, on pile shafts or on pile bases is represented by a series of contact forces 

on nodes. For the set of 33 nodes of the piled raft, the relation between soil settlements and 

contact forces is expressed as: 
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(2.63) 

where p1, p2, … are numbers of the piles. 

 

The total flexibility matrix in Eq. (2.63) can be inverted to give the relationship between contact 

forces and nodal settlements as follows: 
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(2.64) 

 

As indicated before, equating settlements of all nodes on each pile by a uniform settlement and 

carrying out the summation of rows and columns related to that pile in Eq. (2.64), gives the 

composed coefficients with the force on the pile head Phi and its corresponding settlement woi as 

follows: 
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Figure 2-7 Modeling piled raft 
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Accordingly, the total stiffness matrix of the piled raft of size [npr * npr] is reduced to [nr * nr]. It 

means that the composed coefficient technique makes the size of the soil stiffness matrix of the 

piled raft problem equivalent to that of the raft problem alone without piles. 

 

Now, Eq. (2.65) can be rewritten in composed coefficients as: 
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         (2.66)                                            

 

where Kpi, pj, Ki, pj and Kpi, j [kN/m] are composed coefficients of the piled raft. 

 

Based on Eq. (2.66), the relationship between settlements and contact forces of the piled raft can 

be written in general compacted matrix form as: 

 

                          w kb = Q                                                           (2.67) 

where: 

{w} nr settlement vector 

{Q} nr contact force vector 

[kb] nr * nr soil stiffness matrix of the piled raft 

 

For simplicity of the formulation, in next paragraphs the settlement on either raft node or pile 

head is donated by wi, while the contact force on either raft node or pile head is donated by Qi. 

 

2.4.2 Analysis of piled flexible raft 

 

In case of analyzing full flexible raft, the contact force vector {Q} on raft nodes is known. Only 

settlements are required. The advantage of the composed coefficient technique is that the 

composed soil stiffness matrix can be inverted to get a composed flexibility matrix.  

 

Accordingly, a relationship between contact forces under the flexible raft besides forces on pile 

heads and nodal settlements is expressed as: 

 

     Q Cb = w                                                          (2.68) 

 

where [Cb] is n r *nr flexibility matrix of the piled raft, [Cb] = [kb]-1. 
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2.4.3 Analysis of piled rigid raft 

 

For piled rigid raft, unknowns of the interaction problem are nr contact forces Qi, the rigid body 

translation of the piled raft wc, and the rigid body rotations θx and θy of the piled raft about axes 

of geometry centroid. These are determined by considering nr compatibility equations of rigid 

piled raft deflection and the displacement of subsoil at nr nodal points in addition to the three 

equations of overall equilibrium. 

 

Due to the piled raft rigidity, the following linear relation (plane translation) expresses the 

settlement wi at either a node in the raft or a pile that has coordinates (xi, yi) from the geometry 

centroid: 

  y +   x +  wc= w xiyii θtanθtan                                              (2.69) 

 

Equation (2.69) is rewritten in matrix form for the entire piled raft system as: 

 

      X = w
T

                                                         (2.70) 

where: 

{Δ} 3 vector of translation wc and rotations tan θy and tan θx  

[X]T 3 * nr matrix of {1, xi, yi }. xi, yi are coordinates of node i 

 
For equilibrium the following conditions must be satisfied: 

 

- The resultant due to external vertical forces acting on the raft must be equal to the sum of 

contact forces and pile loads 
- The moment due to that resultant about either x-axis or y-axis must be equal to the sum of 

moments due to contact forces and pile loads about that axis 

 

Assuming Qi is a symbol representing either pile load Phi or contact force Qi on the mesh, gives: 

 












y . Q + ... + y . Q + y . Q + y . Q = e . N

x . Q + ... + x . Q + x . Q + x . Q = e . N

Q + ... + Q + Q + Q = N

nn332211y

nn332211x

n321

                              (2.71) 

 

where: 
N  Resultant of applied loads acting on the raft [kN] 

N ex  Moment due to resultant about x-axis, Mx = N ex [kN.m] 

N ey Moment due to resultant about y-axis, My = N ey [kN.m] 

ex, ey  Eccentricities of the resultant about x- and y-axes [m] 

xi, yi  Coordinates of the load Qi [m] 

 
Equation (2.71) is rewritten for the entire piled raft foundation in matrix form as: 

 

    Q X = N                                                          (2.72) 

 

where: 

{N} 3 vector of resultant and moments of applied loads acting on the piled raft 
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Substituting Eqns (2.67) and (2.70) in Eq. (2.72), gives the following linear system of equations 

of the piled rigid raft: 

 

        X kb X = N
T

                                                     (2.73) 

 

Solving the above system of linear equations, gives wc, tan θx, and tan θy. Substituting these 

values in Eq. (2.70) gives the n settlements.  

 

Substituting Eq. (2.70) in Eq. (2.67), gives the following equation to find the n unknown pile 

loads and contact forces. 

 

       X kb = Q
T

                                                         (2.74) 

 

2.4.4 Analysis of piled elastic raft 

 

It is possible to treat the raft as an elastic plate on rigid piles. From the finite element analysis of 

the plate, the equilibrium of the raft is expressed as:  

 

     Q - P =  kr δ][                                                       (2.75) 

 

where: 

{P} 3 * nr vector of applied loads and moments on the raft nodes 

[kr]  3 nr * 3 nr plate stiffness matrix 

{δ} 3 * nr deformation vector of the raft 

 

In the case of analyzing an elastic raft on pile groups, the elastic shortening of the pile may be 

added to the pile settlement in Eq. (2.68). The elastic shortening of the pile i is expressed as: 

 

Ap Ep

l Ph
 = 

ii

ii
i                                                              (2.76) 

 

where: 

Δi Elastic shortening of pile i [m] 

li Length of pile i [m] 

Api Cross-section area of pile i [m2] 

Epi Modulus of elasticity of the material of pile i [kN/m2] 

 

Equation (2.76) is written for the entire piled raft in matrix form as:  

 

    Ph Cp = wp                                                         (2.77) 

 

where: 

{wp} Elastic shortening vector 

[Cp] Elastic pile matrix, which is a diagonal matrix 

{Ph} Vector of forces on pile heads 
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To take the effect of pile shortening into account, the elastic coefficient of the pile i in the matrix 

[Cp] is added to the flexibility coefficient of that pile in the matrix [Cb] in Eq. (2.68) as follows: 

 

       Q  Cp + Cb  = w                                                      (2.78) 

 

Inverting the total flexibility matrix [[Cb] + [Cp]] gives also the total stiffness matrix of piled 

raft [kp] with the effect of pile stiffness due to its elastic material. 

 

    w kp = Q                                                             (2.79) 

 

where [kp] is nr * nr stiffness matrix of the piled raft with the effect of pile elastic material, 

[kp] = [[Cb] + [Cp]]-1. 

 

Substituting Eq. (2.79) in Eq (2.75) leads to: 

 

                            wkp P = kr ][δ                                                  (2.80) 

 

Considering compatibility between piled raft displacement δi and soil settlement si, the following 

linear system of equations of the piled elastic raft can be obtained: 

 

       P =   kr + kp δ                                                  (2.81) 

 

Solving the above system of linear equations gives the displacement at each node of the raft, 

which is equal to the soil settlement at that node. Substituting soil settlements from Eq. (2.81) in 

Eq. (2.66), gives contact forces on the raft and forces on pile heads. 

 

Once settlements on piles woi are determined in the above three cases of piled rafts, the 

individual forces along the pile shaft and on the pile base can be obtained from Eq. (2.64). 
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2.5 Nonlinear analysis 

2.5.1 Nonlinear rigid analysis of single pile 

 

Nonlinear analysis is an important consideration since piles may be loaded close to their full 

capacity, even under working condition. The nonlinear relation between the load and settlement 

of a pile may be determined by considering a hyperbolic relation between load and settlement. 

Figure 2-8 shows a typical nonlinear curve of load-settlement for a wide range of soils. The 

curve can be approximated through a hyperbolic interpolation formula where several equation 

forms are available to verify this curve.  

 

 
Figure 2-8 Load-settlement curve of a single pile (hyperbolic relation) 

 

Many methods were developed to study pile-soil systems with nonlinear response using a 

hyperbolic relation between the load and settlement. Fleming (1992) developed a method to 

analyze and predict load-deformation behavior of a single pile using two hyperbolic functions 

describing the shaft and base performance individually under applied load. Analyzing nonlinear 

behavior by hyperbolic function was used by Mandolini/ Viggiani (1997) for pile groups and 

was used by Russo (1998) for piled raft. They considered piles as nonlinear interacting springs 

based on the method of interaction factors. Basile (1999) assumed, Young’s modulus of the soil 

varies with the stress level at the pile-soil interface using a hyperbolic stress-strain relationship.  

 

Available nonlinear analysis of foundation on Winkler’s soil medium was presented by Baz 

(1987) for grid and by Hasnien (1993) for raft. El Gendy (1999) extended this analysis to be 

applicable for raft on continuum soil medium. The composed coefficient technique described in 

the previous sections enables to apply this analysis on pile problems.  
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The nonlinear behavior of the pile head force-settlement at the piled raft-soil interface may be 

represented as: 

Ql

wn
 + 

ks

wn
 = Ph

1
                                                           (2.82) 

where: 

wn Nonlinear settlement of the pile [m] 

Ql  Limit pile load [kN] 

 

In Figure 2-8 and Eq. (2.82) the initial tangent modulus for single pile is easily obtained from 

linear analysis of the pile, which is equal to the modulus of soil stiffness ks. The limit pile load 

Ql is a geometrical parameter of the hyperbolic relation. In some cases the value of Ql is 

different from the actual ultimate pile load. For a single pile, the force on the pile head Ph is 

known. Therefore, Eq. (2.82) gives directly the nonlinear settlement of the pile wn. 

 

2.5.2 Nonlinear analysis of pile groups, elastic piled raft and rigid piled raft 

 

The nonlinear analysis of the piled raft is also based on the hyperbolic relation presented in 

section 2.5.1. The initial tangent modulus of the hyperbolic relation may be obtained from the 

linear analysis of the piled raft as: 

 

o

i

o

i
i

wo

Ph
= ks                                                              (2.83) 

 

where: 

Phi
o Force on the pile head obtained from the linear analysis [kN] 

woi
o  Pile settlement obtained from the linear analysis [m] 

i Pile number 

o Index, denotes the first analysis in the iteration (linear analysis) 

 

2.5.3 Iterative Procedure 

 

An iteration method is presented to solve the system of nonlinear equations of the piled raft. The 

main idea of this method is that the stiffness matrix [kb] for rigid raft or [kp] for elastic raft is 

converted to a diagonal stiffness matrix [ke]. Stiffness coefficients of this matrix, which 

represent nodal raft stiffness and pile stiffness coefficients, are determined from the contact force 

and its corresponding settlement. Only the pile stiffness is modified at each cycle from the 

iteration process. Using the equivalent diagonal matrix, equations of the piled raft are solved for 

each iteration cycle until the compatibility between raft, piles and soil is achieved. 
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Figure 2-9 shows the iteration cycle and the flow chart of the iteration process. The iteration 

process can be described in the following steps: 

 

1 Carry out the linear analysis of the piled raft by solving system of linear Eqns (2.73) or 

(2.81) whichever is applicable, to get the settlements {w} 

 

2 Find the nodal contact forces {Q} due to the computed settlements from Eq. (2.74) for 

rigid raft and from Eq. (2.79) for elastic raft 

 

3 From the computed settlements and contact forces, determine the nodal stiffness at all 

nodes on the raft and on pile heads from: 

i

i
i

w

Q
= ke                                                            (2.84) 

 

4 Modify the pile stiffness by: 

 

Ql

w
 + 

ks

 = ke

i

i

i

i
1

1
                                                     (2.85) 

 

5 Convert the soil stiffness matrix (matrix [kb] or matrix [kp]) to equivalent diagonal 

stiffness matrix [ke]. This matrix can be generated from nodal raft stiffness computed in 

step 3 and pile stiffness computed in step 4 

  

6  Replace the full matrix by diagonal matrix [ke]. Then, carry out the nonlinear analysis of 

the piled raft to get the settlements {w} 

 

7 Compute the contact force under the raft and force on pile head by: 

 

iii
wke = Q                                                          (2.86) 

  

8  Compare the settlement from cycle i with that of cycle I - 1 to find the accuracy of the 

solution 

 

The steps 3 to 8 are repeated until the accuracy reaches a specified tolerance ε, which means that 

a sufficient compatibility between settlements of piles, raft and soil are achieved at the piles-raft-

soil interface. However, in this analysis the nonlinear response is applied only on piles, it can be 

easily added the nonlinear response of the raft as indicated by El Gendy (1999) to the piled raft 

system. 
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Carry out the linear analysis 
Eq.  (2.73) or Eq.  (2.81)

to get {w}

Start

l=0

l = Iteration cycle No.

Finde the nodal contact forces{Q}
from Eq.  (2.74) or Eq.  (2.79)

Modify the pile stiffness

Determine the nodal stiffness at all nodes
kei = Qi / wi

End

No

Yes

l=l+1

Convergence
satisfied

{}={w}l-{w}l-1


Find the vector {}of the 
rigid body translation and 

rotations about x-and y-axes
{N}=[Xs][ke][Xs]T{}

Yes

Find the vector {}from FE-Method
[[ke]+[kr]]{}={P}

No

Rigid raft

Generate the stiffness matrix [ke]

1       wi

kei = 

ksi     Qli

1

Compute
contact forces

Qi = kei wi

 
 

 

Figure 2-9 Flow chart of the iteration process 
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2.6 Numerical Examples 

 

The numerical modeling of single pile, pile groups and piled raft described in this chapter was 

implemented in the program ELPLA. To verify and evaluate the numerical modeling, a series of 

comparison were carried out in which results from ELPLA were compared with those from 

existing methods of analysis. 

 

2.6.1 Test Example: Evaluation of settlement influence factor I1 for a single pile  

 

Most of piled raft analyses apply a numerical integration using Mindlin’s solution to determine 

flexibility coefficients of piles. Applying a numerical integration in the piled raft analysis, leads 

to significant computations, especially in large piled raft problems. In this case study closed 

form equations derived from Mindlin’s solution are used in all computations. To verify these 

equations for determining flexibility coefficients, the settlement influence factors I1 for a single 

pile obtained by Poulos (1968) and Poulos/ Davis (1968) are compared with those obtained by 

closed form equations listed in chapter 1. 

 

From the analysis of a single pile carried out by Poulos/ Davis (1968), the settlement s1 [m] of a 

single pile is expressed as: 

 

11 I 
E L

P
 = s

s

                                                         (2.87) 

  

where: 

P  Load on the pile head [kN] 

L Pile length [m] 

Es  Young’s modulus of the surrounding soil mass [kN/m2] 

I1 Settlement influence factor for a single pile [-] 

 

A pile of length L = 12.5 [m] is chosen. The pile is divided into 10 elements, each 1.25 [m]. 

Load on the pile head P and Young’s modulus of the surrounding soil mass Es are chosen to 

make the term P/Es of Eq. (2.87) equal to unit. Thus, load on the pile head is chosen to be P = 

5000 [kN], while Young’s modulus of the surrounding soil mass is chosen to be Es = 5000 

[kN/m2]. The settlement influence factor I1 is determined at different values of h/L and L/d, 

where h [m] is the thickness of the soil layer and d [m] is the pile diameter. 

 

The settlement influence factors I1 of a single pile published by Poulos (1968) in Table 1 in his 

paper are compared with those obtained from the closed form equations. The factors are 

tabulated in Table 2-1 and Table 2-2 for two different values of Poisson’s ratio of the soil νs. 

From these tables, it can be observed that the settlement influence factors obtained by closed 

form equations (chapter 1) at different soil layers and pile diameters are nearly equal to those 

obtained by Poulos (1968) with maximum difference of Δ = 2.78 [%]. 

 

Flexibility coefficients determined from numerical integration are also available in ELPLA. 

Table 2-3 and Table 2-4 list the settlement influence factors I1 when using numerical integration. 

The tables show that settlement influence factors determined from closed form equation and 

those determined from numerical integration are nearly the same. 
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Table 2-1 Settlement influence factors I1 [-] for a single pile 

Using closed from equations, Poisson’s ratio of the soil νs = 0.5 [-] 
 

 

 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 

Diff. 

Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
∞ 

 
1.41 

 
1.86 

 
2.54 

 
1.44 

 
1.88 

 
2.56 

 
2.13 

 
5 

 
1.31 

 
1.76 

 
2.44 

 
1.34 

 
1.77 

 
2.47 

 
1.23 

 
2.5 

 
1.20 

 
1.64 

 
2.31 

 
1.22 

 
1.65 

 
2.33 

 
1.67 

 
1.5 

 
0.98 

 
1.42 

 
2.11 

 
0.99 

 
1.43 

 
2.12 

 
1.02 

 
1.2 

 
0.72 

 
1.18 

 
1.89 

 
0.74 

 
1.19 

 
1.90 

 
2.78 

 

 

Table 2-2 Settlement influence factors I1 [-] for a single pile 

Using closed from equations, Poisson’s ratio of the soil νs = 0.0 [-] 
 

 

 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 

Diff. 

Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
∞ 

 
1.16 

 
1.47 

 
1.95 

 
1.17 

 
1.48 

 
1.94 

 
0.86 

 
5 

 
1.07 

 
1.37 

 
1.86 

 
1.08 

 
1.38 

 
1.86 

 
0.93 

 
2.5 

 
0.96 

 
1.27 

 
1.75 

 
0.98 

 
1.28 

 
1.74 

 
2.08 

 
1.5 

 
0.80 

 
1.11 

 
1.58 

 
0.81 

 
1.12 

 
1.59 

 
1.25 

 
1.2 

 
0.62 

 
0.94 

 
1.44 

 
0.62 

 
0.94 

 
1.42 

 
1.39 
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Table 2-3 Settlement influence factors I1 [-] for a single pile 

Using numerical integration, Poisson’s ratio of the soil νs = 0.5 [-] 
 

 

 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 

Diff. 

Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
∞ 

 
1.41 

 
1.86 

 
2.54 

 
1.42 

 
1.84 

 
2.51 

 
1.18 

 
5 

 
1.31 

 
1.76 

 
2.44 

 
1.31 

 
1.74 

 
2.42 

 
0.82 

 
2.5 

 
1.20 

 
1.64 

 
2.31 

 
1.19 

 
1.62 

 
2.30 

 
1.22 

 
1.5 

 
0.98 

 
1.42 

 
2.11 

 
0.97 

 
1.40 

 
2.08 

 
1.42 

 
1.2 

 
0.72 

 
1.18 

 
1.89 

 
0.72 

 
1.16 

 
1.86 

 
1.59 

 

 

Table 2-4 Settlement influence factors I1 [-] for a single pile 

Using numerical integration, Poisson’s ratio of the soil νs = 0.0 [-] 
 

 

 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 

Diff. 

Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
∞ 

 
1.16 

 
1.47 

 
1.95 

 
1.15 

 
1.45 

 
1.91 

 
2.09 

 
5 

 
1.07 

 
1.37 

 
1.86 

 
1.06 

 
1.36 

 
1.82 

 
2.15 

 
2.5 

 
0.96 

 
1.27 

 
1.75 

 
0.96 

 
1.26 

 
1.72 

 
1.71 

 
1.5 

 
0.80 

 
1.11 

 
1.58 

 
0.79 

 
1.09 

 
1.55 

 
1.90 

 
1.2 

 
0.62 

 
0.94 

 
1.44 

 
0.61 

 
0.92 

 
1.40 

 
2.78 
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2.6.2 Case study: Piled raft of Torhaus 

 

Torhaus is the first building in Germany with a foundation designed as a piled raft, Figure 2-10. 

The building lies in Frankfurt city in Germany. It is 130 [m] high and rests on two separate piled 

rafts, where a street passes under the building. Measured instruments were installed inside the 

foundation to record piled raft settlement and stress. Many authors studied the foundation of the 

Torhaus and applied their analysis methods on piled raft. Some of them are Sommer et al. 

(1985), Sommer (1989) and Reul/ Randolph (2003). 

 

 
Figure 2-10 Torhaus (http://www.fussballportal.de/images/wm/fra_torhaus.jpg) 

 

 

Figure 2-12 shows a layout of Torhaus with piled rafts. The building has no underground floors. 

The foundation is two separate equal piled rafts with rectangular shape areas, each of 17.5 [m] × 

24.5 [m] sides. The distance between the two rafts is 10 [m]. The rafts are founded at a depth 3.0 

[m] under the ground surface. The estimated total load on each raft is 200 [MN]. Raft thickness 

is 2.5 [m]. A total of 42 bored piles with a length of l = 20 [m] and diameter of D = 0.9 [m] are 

located under each raft. The pile spacing varies from 3.5 D to 3.0 D. The subsoil at the location 

of the building consists of gravel and sand up to 5.5 [m] below the ground surface, followed by 

layers of Frankfurt clay extending to great depth. The groundwater level lies below rafts. 
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The building was constructed between 1983 and 1986, the recorded maximum settlement at the 

raft middle in 1988 was about 12 [cm] according to Sommer (1989). If Torhaus stands on a raft 

only, the expected settlement would be about 26 [cm], based on geotechnical studies according 

to Sommer et al. (1985). Therefore, to reduce the settlement, piled rafts were considered. Using 

available data and results of Torhaus piled rafts, which have been discussed in details in the 

previous references, the present piled raft analysis is evaluated and verified for analyzing a piled 

raft. 

 

2.6.2.1 Soil properties 

 

Young’s modulus 

According to Reul/ Randolph (2003), Young’s modulus of the sand with gravel layer under the 

rafts is E = 75000 [kN/m2]. Young’s modulus for reloading is taken to be W = 3 E. Based on the 

back analysis after Amann et al. (1975), the distribution of modulus of compressibility for 

loading of Frankfurt clay with depth is defined by the following empirical formula:  

 

 z +  E = E sos 0.35 1                                                              (2.88) 

while that for reloading is: 

 

 2mMN/70  = W s                                                              (2.89) 

 

where: 

Es  Modulus of compressibility for loading [MN/m2] 

Ws  Modulus of compressibility for reloading [MN/m2] 

Eso  Initial modulus of compressibility, Eso= 7 [MN/m2]  

z Depth measured from the clay surface, [m] 

 

Undrained cohesion and limit pile load 

The undrained cohesion cu of Frankfurt clay increases with depth from cu = 100 [kN/m2] to cu = 

400 [kN/m2] in 70 [m] depth under the clay surface according to Sommer/ Katzenbach (1990). 

Russo (1998) suggested a limiting shaft friction not less than 180 [kN/m2] meeting undrained 

shear strength of 200 [kN/m2]. To carry out the present analysis a limit shaft friction of τ = 180 

[kN/m2] is assumed, which gives a limit pile load of Ql = 10 [MN] where it is calculated from:  

 

[MN] 10 [kN] 1017920*0.9*π*801**π*τ  lD Ql                   (2.90) 

 

where: 

Ql  Limit pile load, [MN] 

τ  Limit shaft friction, τ = 180 [kN/m2] 

D Pile diameter, [m] 

l  Pile length, [m] 

 

Poisson’s ratio 

Poisson’s ratio of the soil is taken to be s = 0.25 [-]. 
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To carry out the analysis, the subsoil under the raft is considered as indicated in the boring log of 

Figure 2-11 that consists of 13 soil layers. The total depth under the ground surface is taken to be 

113 [m]. 

 

 

 

 
 

Figure 2-11 Boring log 

 

 

 

 

 

BP1 

S,g 
3.00 

E = 75000[kN/m2],Fhi = 30[°] 
W = 225000[kN/m2],C = 0[kN/m2] 
Gam = 18[kN/m3],Nue = 0.25[-] 

S,g 
5.50 

E = 75000[kN/m2],Fhi = 30[°] 
W = 225000[kN/m2],C = 0[kN/m2] 
Gam = 8.19[kN/m3],Nue = 0.25[-] 

T 
15.50 

E = 19000[kN/m2],Fhi = 0[°] 
W = 70000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
25.50 

E = 44000[kN/m2],Fhi = 0[°] 
W = 70000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
35.50 

E = 68000[kN/m2],Fhi = 0[°] 
W = 70000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
45.50 

E = 93000[kN/m2],Fhi = 0[°] 
W = 93000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
55.50 

E = 117000[kN/m2],Fhi = 0[°] 
W = 117000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
65.50 

E = 142000[kN/m2],Fhi = 0[°] 
W = 142000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
75.50 

E = 166000[kN/m2],Fhi = 0[°] 
W = 166000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
85.50 

E = 191000[kN/m2],Fhi = 0[°] 
W = 191000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
95.50 

E = 215000[kN/m2],Fhi = 0[°] 
W = 215000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
105.50 

E = 240000[kN/m2],Fhi = 0[°] 
W = 240000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
113.00 

E = 261000[kN/m2],Fhi = 0[°] 
W = 261000[kN/m2],C = 150[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 
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2.6.2.2 Raft and pile material 

 

Raft has the following material parameters: 

Young's modulus  Eb    = 3.4 * 107 [kN/m2] 

Poisson's ratio  b   = 0.2           [-] 

Unit weight           γb   = 25            [kN/m3] 

 

while piles have the following material parameters: 

Young's modulus  Eb   = 2.35 * 107   [kN/m2] 

Unit weight           γb      = 25               [kN/m3] 

 

2.6.2.3 Analysis of the piled raft 

 

Comparisons are carried out to evaluate the nonlinear analysis of piled elastic raft using 

composed coefficient technique. Here results of three-dimensional finite element analysis and 

field measurements are compared with those obtained by the present analysis. In the 

comparisons the present analysis is termed NPRH. 

 

The raft is divided into rectangular elements as shown in Figure 2-13. Element sizes in x-

direction for a single raft are 1.75 + 10 * 1.4 + 1.75 = 17.5 [m], while those in y-direction are 14 

* 1.75 = 24.5 [m]. Piles are divided into line elements with 2.0 [m] in length. The raft is 

considered to be elastic plate supported on rigid piles. The effective depth of the soil layers 

under the raft is taken to be H = 110 [m] as assumed by three-dimensional finite element 

analysis. 
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Frankfurt clay

(130 m)

(0.0 m)

(100 m)

Sand with gravel

 
 

 

Figure 2-12 Layout of Torhaus with piled rafts 
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Figure 2-13 Mesh of Torhaus piled rafts with piles 



Chapter 2 

 

 

 2-43 

2.6.2.4 Comparison with three-dimensional finite element analysis and field measurements  

 

Reul/ Randolfph (2003) analyzed Torhaus piled rafts using three dimensional finite element 

model and compared their results with those obtained by field measurements according to 

Sommer (1989). For reducing the computational effort and time, they took the advantage of the 

symmetry in shape, soil and load geometry about both x- and y-axes to carry out the analysis for 

a quarter of a piled raft. In NPRH the two piled rafts are analyzed together to take the interaction 

among all elements of piled rafts. A linear analysis is carried out first to obtain the initial 

modulus of subgrade reaction. In this primary analysis the effect of reloading is taken into 

account. For the nonlinear analysis, the accuracy number is chosen to be 0.0002 [m]. Seven 

cycles in few minutes are required to obtain the nonlinear analysis of the piled rafts together. 

This is related to using composed coefficient technique that reduced the size of soil stiffness 

matrix from [1314 * 1314] to [390 * 390]. Accordingly, the total number of equations was 

reduced to 1170, where npr = 1314, nr = 390 and number of unknown per node is 3 (3 nr = 1170).  

 

Table 2-5 lists results of central settlement and bearing factor of piled raft obtained by NPRH 

and those obtained by Reul/ Randolph (2003) using three-dimensional finite element analysis. 

Also, the table includes the measured results presented by Sommer (1989). Figure 2-14 and 

Figure 2-15 compare loads on piles 1 to 6 (Figure 2-13) obtained by NPRH with those obtained 

by Reul/ Randolph (2003) using three-dimensional finite element analysis and with measured 

pile loads presented by Sommer (1989).  

 

 

Table 2-5 Comparison between results obtained by 3D FE-Analysis and field measurements   

with those obtained by NPRH 

Type of analysis Measurement 3D FE-Analysis NPRH 

Central settlement scenter [cm] 12.4 9.6 11.2 

Bearing factor αkpp [%] 67 76 64 

 

 

Table 2-5 shows that settlement and bearing factor of piled raft for NPRH is are in good 

agreement with field measurements. Results of pile loads in Figure 2-14 and Figure 2-15 are in 

good agreement with both those of three-dimensional finite element analysis and field 

measurements. Three-dimensional finite element analysis gave a relatively big difference in the 

bearing factor compared with that of field measurement and NPRH. 

 

This case study shows that NPRH is not only an acceptable method to analyze piled raft but also 

a practical one for analyzing large piled raft problems. Besides the analysis gives good 

agreement with measured results, it takes less computational time and less effort for generating 

input data compared with other complicated models using three dimensional finite element 

analysis. 
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2.6.2.5 Comparing among different analysis types  

 

To show the difference between results when analyzing piled raft of Torhous linearly and 

nonlinearly as piled elastic raft or piled rigid raft, piled raft of Torhous is analyzed four times as 

follows: 

 

- Linear piled rigid raft 

- Nonlinear piled rigid raft 

- Linear piled elastic raft 

- Nonlinear piled elastic raft 

 

For the four analysis types, Table 2-6 shows central settlement and bearing factor of piled raft, 

while Figure 2-16 and Figure 2-17 show loads on piles 1 to 6. In general, it can be noticed from 

Table 2-6 and these figures that: 

 

Settlement 

- Settlement from nonlinear analysis for piled rigid raft or piled elastic raft is greater than that 

obtained from linear analysis 

- The nonlinear settlement exceeds linear settlement by 48 [%] for piled rigid raft and by 29 

[%] for piled elastic raft 

- For a single analysis, either linear or nonlinear, the difference in settlement obtained from 

analyzing piled rigid raft or piled elastic raft is small. This means any of the analysis can be 

used for estimating the settlement 

 

Bearing factor of piled raft 

- Bearing factor of piled raft from nonlinear analysis is less than that obtained from linear 

analysis 

- Bearing factor of piled raft from nonlinear analysis decreases by 13 [%] for analyzing piled 

rigid raft and by 15 [%] for piled elastic raft 

 

Force on pile head 

- Using nonlinear analysis redistributes pile loads by increasing values of inner piles (piles 1 

and 6) and decreasing values of edge piles (piles 2, 3, 4 and 5) 

- Total pile loads of piled rigid raft are greater than those of piled elastic raft 

- Pile loads for edge piles of piled rigid raft are greater than those of piled elastic raft and vice 

verse for inner piles 
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Table 2-6 Comparison between results of different analysis types 
 
 

Type of analysis 

 
Piled rigid raft 

 
Piled elastic raft 

 
Linear 

 
Nonlinear 

 
Linear 

 
Nonlinear 

 
Central settlement scenter [cm] 

 
7.0 

 
13.4 

 
8.0 

 
11.2 

 
Bearing factor αkpp [%] 

 
88 

 
77 

 
75 

 
64 

 

 

Applying different analysis types on piled raft of Torhous shows that the nonlinear analysis of 

piled elastic raft is the acceptable analysis type, where its results are in agreement with measured 

values. 
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Figure 2-14 Comparison between pile loads obtained by 3D FE-Analysis and field 

measurements with those obtained by NPRH (Piles 3, 4 and 5)  
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Figure 2-15 Comparison between pile loads obtained by 3D FE-Analysis and field 

measurements with those obtained by NPRH (Piles 1, 2 and 6) 

 

 

 

0

2,5

5

7,5

10

12,5

15

Pile 5  Pile 4  Pile 3

P
il

e 
lo

ad
  P

h
 [

M
N

]

Linear piled rigid raft

Nonlinear piled rigid raft

Linear piled elastic raft

Nonlinear piled elastic raft

 
Figure 2-16 Comparison between pile loads of different analysis types (Piles 3, 4 and 5)  
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Figure 2-17 Comparison between pile loads of different analysis types (Piles 1, 2 and 6) 
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3 Empirical with numerical modeling pile group and piled raft 

3.1 Introduction 

 

Many authors have studied pile-soil system with nonlinear response using theoretical relations 

between load and settlement. Mandolini/ Viggiani (1997), (1998) and Russo (1998) considered 

piles as nonlinear interacting springs based on the method of interaction factors. In their analysis, 

the no-linearity is essentially concentrated at the pile-soil interface, while the interaction 

between other elements (pile-pile, pile-raft and raft-pile interactions) may be represented by a 

linear model. The nonlinear soil-pile response is represented by an expression corresponding to a 

hyperbolic load-settlement relationship for the single pile. The hyperbolic relation is based on a 

function having a maximum value for the pile capacity. The maximum value is intended only as 

a geometrical parameter of the hyperbola fitting the load-settlement curve in the load range of 

interest. In some cases, this value may significantly differ from the actual failure load 

(Mandolini/ Viggiani (1997)). 

 

Basile (1999), (2003) had used a nonlinear model that follows the well-established hyperbolic 

relationship between soil stress and strain. This model was proposed by Duncan/ Chang (1970), 

which assumes that soil modulus of elasticity varies with the stress level at the pile-soil interface. 

The hyperbolic curve fitting for this model depends on some constants, which are difficult to be 

evaluated. The best way to determine these constants is by fitting the load-deformation curve 

with the data from the full-scale pile load test. 

 

Witzel/ Kempfert (2005) presented empirical relations to predict load-settlement behavior for 

precast driven piles using field test data. Also, most national codes such as German standard  

DIN 4014 [5] and Egyptian standard ECP [7] present empirical relations for load-settlement of 

piles based on situ statistical results. Therefore, El Gendy et al. (2006) developed a mixed 

technique containing empirical and mathematical models for analyzing pile group and piled raft. 

The technique depends on load-settlement curve obtained from field measurements or empirical 

relations; a nonlinear analysis of combined piled-raft is presented to take into account the actual 

response of subsoil behavior. In the analysis, each pile is treated as two units, shaft and base, 

having a uniform settlement along the pile shaft and in the pile base. This assumption enables 

modeling the nonlinear behavior of combined piled-raft. The nonlinear response of the pile is 

based on the DIN 4014 empirical relation of load-settlement curve. Connecting empirical and 

theoretical procedures, a method termed NPRD for nonlinear analysis of combined piled-raft 

using DIN 4014 is developed. The procedure meets the requirements of the KPP-guideline [23], 

section 6, to a computation model. The efficiency of NPRD is demonstrated in a comparison 

computation of Frankfurt Messeturm with the results of different authors. The method was 

implemented in the program ELPLA [8]. 
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3.2 Numerical Modeling 

 

In the analysis of the numerical model, the self-settlement of a pile is determined from DIN 4014 

[5] load-settlement relationship while the settlement due to pile-pile, pile-raft and raft-soil 

interactions is determined numerically using flexibility coefficients. Full compatibility between 

settlements of piles, raft and soil is achieved at pile-raft-soil interface. 

 

3.2.1 Pile-pile interaction 

 

DIN 4014 [5] presents pile load in two components: tip force on the base of the pile and skin 

friction force acting along the pile shaft. Therefore, two flexibility matrices for pile-pile 

interaction without the effect of pile itself are determined. The first matrix represents the 

influence of unit tip forces, while the other represents the influence of unit skin forces. 

 

3.2.1.1 Settlement along the pile shaft Sbsi, j [m] due to a tip force Qbj [kN] 

 

To formulate equations of the method, a system of two piles of different lengths is considered as 

shown in Figure 3-1. The actual tip stress qbj [kN/m2] on the base of the pile j is replaced by an 

equivalent tip force Qbj [kN]. The pile i of a length li [m] is subdivided into m elements of equal 

length Δl [m]. First, the settlement in a shaft element k of the pile i that is influenced by a tip 

force Qbj acting on the base of the pile j is determined. Then, a uniform settlement along the pile 

shaft due to this tip force can be calculated numerically by integrating settlements for the 

individual elements. 

 

According to Mindlin’s solution (1936) the settlement Sbsk, j in a point k at a depth z from the 

surface due to a tip force Qbj on the base of pile j is given by: 

 

Qb f = Sbs jj k,j k,                                                        (3.1) 

 

where fk, j is given by Mindlin’s solution as:   
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where: 

    and 
22

2

22
1 c +z  + r = R ,c -z  + r = R  

c  Depth of the point load Qbj from the surface [m] 

z  Depth of the studied point k from the surface [m] 

r  Radial distance between points k and j [m] 

fk, j  Flexibility coefficient of point k due to a unit load at point j [m/kN] 

Gs Shear modulus of the soil [kN/m2], Gs = 0.5 Es / (1+ νs) 

Es Elasticity modulus of the soil [kN/m2] 

νs Poisson’s ratio of the soil [-] 
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Figure 3-1 Settlement Sbsk, j in a pile element k due to a tip force Qbj on the base of pile j 

 

 

Then the uniform settlement Sbsi, j along the shaft of pile i due to a tip force Qbj on the base of 

pile j can be obtained from: 

 

 dz Sbs 
l

1
 = Sbs

z

z
j k,

i

j i, 
2

1

                                                  (3.3) 

 

Although Eq. (3.3) can be integrated analytically for z but a numerical integration is used to 

allow analyzing pile passing through multi-layered soil as described later. Substituting Eq. (3.1) 

in Eq. (3.3) and applying numerical integration using the rectangular rule, leads to: 

 

  f + ... + f + f + f + f  
l

l Qb
 = Sbs j m,j ,j ,j ,j ,

i

j

j i, 4321


                          (3.4) 

 

Equation (3.4) is written in a simplified form as: 

 

Qb F = Sbs jj i,j i,                                                        (3.5) 

 

where Fi, j [m/kN] is the shaft flexibility coefficient of pile i due to a tip force Qbj on the base of 

pile j.  
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The shaft flexibility coefficient Fi, j is expressed as: 

 

  f + ... + f + f + f + f  
l

l
 = F j m,j ,j ,j ,j ,

i

j i, 4321


                               (3.6) 

 

 

3.2.1.2 Settlement in the pile base Sbbi, j [m] due to a tip force Qbj [kN] 

 

The settlement Sbbi, j in the base of the pile i due to a tip force Qbj on the base of pile j is 

expressed as: 

Qb F = Sbb jj b,j i,                                                          (3.7) 

 

where Fb, j [m/kN] is the base flexibility coefficient of pile i due to a tip force Qbj on the base of 

pile j. The base flexibility coefficient is determined from Eq. (3.2) by putting z = z2, where z2 [m] 

is the base depth of pile i from the ground surface. 

 

3.2.1.3 Settlement in the pile Sbi, j [m] due to a tip force Qbj [kN] 

 

From the assumption that the pile has a uniform settlement in all its nodes, settlement along the 

shaft is the same as that in the base. Now, the settlement in the pile i can be represented by one 

value Sbi, j, which is the average of shaft and base settlements of the pile due to the tip force Qbj 

on the base of the pile j. Taking the average of settlements in Eqns (3.5) and (3.7) gives the 

settlement in the pile by: 

 

   Qb Fb = Sb jj i,j i,                                                          (3.8) 

 

where Fbi, j = 0.5 (Fi, j + Fb, j) is the flexibility coefficient of pile i due to a tip force Qbj on the 

base of pile j [m/kN]. 

 

3.2.1.4 Settlement in the pile Sbi [m] due to all tip forces 

 

For a group of np piles, the settlement Sbi in a pile i is attributed to settlements caused by all tip 

forces acting on np piles except pile i. Then, settlement Sbi is given by:  

 

ji  ,Qb Fb  = Sb + ... + Sb + Sb + b S= Sb jj i,

n

j=

n i, i, i, i,i 
1

321                        (3.9) 

 

For a pile group of np piles, Eq. (3.9) can be written in matrix form as: 

          

    Qb Fb = Sb                                                          (3.10) 

 

where: 

{Sb} np vector of settlements in piles due to tip forces on pile bases 

{Qb} np vector of tip forces on pile bases 

[Fb] np* np matrix of pile flexibility coefficients due to unit tip forces on piles, Fbi, i = 0 
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3.2.1.5 Settlement along the pile shaft Sssi, j [m] due to a skin friction force Qsj [kN] 

 

Figure 3-2 shows a system of two piles where a shaft element k of a pile i is influenced by a skin 

friction τsj [kN/m2] acting on the shaft perimeter of a pile j with a diameter dj [m] and a length lj 

[m]. Using DIN 4014 [5], the skin friction along the shaft perimeter of pile j is represented by a 

total skin friction force Qsj [kN] = π dj lj τsj. To avoid extensive computations when applying 

Mindlin’s solution to determine flexibility coefficients due to shaft stress along the pile shaft, the 

shaft stress τsj is replaced by an equivalent line load T [kN/m] = Qsj / lj acting on the axis of the 

pile. The settlement Sssk, j in a point k at a depth z from the surface due to a total skin force Qsj 

on a pile j is expressed as: 

      

Qs I = Sss jj k,j k,                                                       (3.11) 

 

where Ik, j [m/kN] is the flexibility coefficient of point k due to the total skin friction force Qsj on 

pile j. This flexibility coefficient is determined from Eq. (3.2) by integrating the coefficient of 

point load dQsj = T dc over the length of pile j. The flexibility coefficient Ik, j of the point k due 

to a unit skin force on pile j can be obtained from: 

 

 dc f 
l

1
 = I

c

c j k,

j

j k, 
2

1

                                                 (3.12) 

The integration yields to: 

 
 I + I + I + I + I 

 G l 
 = I

ssj

j k, 54321
ν - 1 π16

1
                             (3.13) 

 

where terms I1 to I5 are given by: 

 

 
   

    













c -z  - c -z  + r

c -z  - c -z  + r
   = I s

11

22

22

22

1 lnν 4 - 3                                  (3.14) 

 

 

        

    













c +z  + c +z  + r

c +z  + c +z  + r
   -   = I ss

2

11

22

22

22

2 lnν 4 - 3ν - 18                        (3.15) 
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 - 
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 + 
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1
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2
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2
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22
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












              (3.16) 
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                 (3.17) 

 

 

 

  
  

  
  

   c +z  + r

z  
 + 

c +z  + r

z  
 -

 

 c +z  + r r 

c +z z  + rz  
 - 

 c +z  + r r 

c +z z  - rz  
 = I

2

1

22
2

22

2

22
3/22

1

34

2

22
3/2

2

34

5

66

3

6

3

6

                          (3.18) 

 

where: 

c1  Start depth of the line load T from the surface [m] 

c2  End depth of the line load T from the surface [m] 

lj  Length of the line load T [m] 

r  Radial distance between point k and j [m] 

 

 



Chapter 3 

 

 

 3-9 

 
 

 

Figure 3-2 Settlement Sssk, j in a pile element k due to a skin force Qsj = Tj lj on pile j 

 

 

The uniform settlement Sssi, j along the shaft of pile i due to a skin force Qsj on pile j can be 

obtained by using the same approach used for determining the uniform settlement due to a tip 

force on the base. Similarly to Eq. (3.5), the uniform settlement Sssi, j is given by: 

 

Qs L = Sss jj i,j i,                                                          (3.19) 

 

where Li, j [m/kN] is the shaft flexibility coefficient of pile i due to a skin force Qsj on pile j. The 

shaft flexibility coefficient Li, j is expressed as: 

 

  I + ... + I + I + I + I  
l

l
 = L j m,j ,j ,j ,j ,

i

j i, 4321


                               (3.20) 

 

3.2.1.6 Settlement in the pile base Ssbi, j [m] due to a skin force Qsj [kN] 

 

The settlement Ssbi, j in the base of the pile i due to a skin force Qsj on pile j is expressed as: 

 

Qs L = Ssb jj b,j i,                                                      (3.21) 

 

where Lb, j [m/kN] is the base flexibility coefficient of pile i due to a skin force Qsj on pile j. The 

base flexibility coefficient is determined from Eq. (3.11) by putting z = z2. 
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3.2.1.7 Settlement in the pile Ssi, j [m] due to a skin force Qsj [kN] 

 

Similarly to Eq. (3.8), the settlement in the pile is obtained from: 

 

Qs Is = Ss jj i,j i,                                                     (3.22) 

 

where Isi, j = 0.5 (Li, j + Lb, j) is the flexibility coefficient of pile i due to a skin force Qsj on pile j 

[m/kN].  

 

3.2.1.8 Settlement in the pile Ssi [m] due to all skin forces 

 

Again and similar to Eq. (3.10), the settlement Ssi for a pile group of np piles is given in matrix 

form by: 

 

    Qs Is = Ss                                                      (3.23) 

 

where: 

{Ss} np vector of settlements in piles due to skin forces on piles 

[Is] np* np matrix of pile flexibility coefficients due to unit skin forces on piles, Isi, i = 0 

{Qs} np vector of skin forces on piles 

 

3.2.1.9 Self-settlement of the pile Svi [m] 

 

According to DIN 4014 [5], the self-settlement of the pile is determined from the empirical 

nonlinear relation between the load and settlement of a single pile as indicated in Figure 3-3. 

From this figure, the relation between the self-settlement in the pile and its load can be expressed 

as: 

 

Qp Cp = Qp 
k 

1
 = Sv iii

i

i
tan

                                             (3.24) 

 

where: 

Svi  Self-settlement of pile i [m] 

Qpi  Load on pile i, Qpi = Qbi + Qsi [kN] 

tan ki  Ratio between the load on pile and the settlement [kN/m] 

Cpi  Flexibility coefficient of pile i due to a unit load on it, Cpi = 1/tan ki, [m/kN] 
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Figure 3-3 Load-settlement curve of a single pile according to DIN 4014 [5] 

 

 

For a pile group of np piles, Eq. (3.24) can be written in matrix form as: 

 

    Qp Cp = Sv                                                      (3.25) 

 

where: 

{Sv} np vector of self-settlements in piles 

[Cp] np* np diagonal matrix of flexibility coefficients due to unit pile loads 

{Qp} np vector of pile loads 

 

Equation (3.25) may be written in another form as: 

 

    Sv Kp = Qp                                                     (3.26) 

 

where [Kp] = [Cp]-1 is a diagonal matrix of dimension [np* np] representing soil stiffness due to 

pile self-settlements. The matrix coefficients are obtained from (tan ki). 

 

In the nonlinear analysis of pile group or piled raft, it is required to assess an initial value for the 

flexibility coefficient Cpi to start the computation. This value may be estimated from the ratio 

between pile load Qt and settlement Srg as indicated in Figure 3-3 and Eq. (3.27). It is clear from 

Figure 3-3 that for a relative light applied load on the raft, i.e. Qp ≤ Qt, the analysis can be 

carried out by this initial value without modification. 

k 

1
 = Cp

(o)
i

(o)

i
tan

                                                      (3.27) 

where: 

tan ki
(o)  Ratio between Qt and Srg [kN/m] 

Cpi
(o)  Initial flexibility coefficient of pile i due to a unit load on it [m/kN] 

Srg Settlement at ultimate skin friction [m] 

Qt  Pile load corresponding to Srg [kN] 
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3.2.2 Pile-raft interaction 

 

In the analysis, both the raft and the contact area of the supporting medium are divided into 

elements. For each node in the elements, the contact pressure area around this node may take 

different shapes according to the natural geometry of the elements around the node. The contact 

pressure qrj [kN/m2] at the area around a node j on the raft is replaced by an equivalent contact 

force Qrj [kN]. Figure 3-4 shows a shaft element k of a pile i that is influenced by a contact force 

Qrj acting on the raft at node j. 

 

 

 
 

Figure 3-4 Settlement Srsk, j in a pile element k due to a contact force Qrj 

 

 

Using the same approach described in section 3.2.1 with the same equations, a settlement Srsk, j 

in a pile element k due to a contact force Qrj is determined. Then, a uniform settlement Srsi, j 

along the shaft of pile i can be obtained using numerical integration as the same manner in Eqns 

(3.3) to (3.5). Finally, settlement Srbi, j in the base of the pile i due to contact force Qrj is 

obtained as the same manner in Eq. (3.7). Taking the average of settlements Srsi, and Srbi, j, gives 

the settlement in the pile by: 

 

Qr Jr = Sr jj i,j i,                                                       (3.28) 

 

where Jri, is the flexibility coefficient of pile i due to a contact force Qrj on node j on the raft 

[m/kN]. 

 

For a pile group of np piles, settlements in piles due to contact forces are expressed as: 

  

    Qr Jr = Sr                                                      (3.29) 
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where: 

{Sr} np vector of settlements in piles due to contact forces on the raft 

[Jr] np* nr matrix of pile flexibility coefficients due to unit contact forces 

{Qr} nr vector of contact forces on the raft 

 

Now the total settlement in a pile i due to all forces in the system of piled raft foundation is 

given by: 

 

         Sr + Sv + Ss + Sb = Sp                                           (3.30) 

 

Substituting Eqns (3.10), (3.23), (3.25) and (3.29) in Eq. (3.30), gives: 

 

             Qr Jr + Qp Cp + Qs Is + Qb Fb = Sp                             (3.31) 

 

where: 

{Sp} np vector of total settlements in piles due to all forces in the system of piled raft 

foundation 

 

3.2.3 Raft-pile interaction 

 

Figure 3-5 and Figure 3-6 show the raft-pile interaction for both pile base and shaft. Referring to 

Figure 3-5, the settlement Wbi, j [m] in a node i on the raft due to a tip force Qbj on the base of 

pile j is given by: 

 

Qb Cb = Wb jj i,j i,                                                    (3.32) 

 

while the settlement Wbi, j [m] in a node i on the raft due to a skin force Qsj on pile j as shown in 

Figure 3-6 is given by: 

 

Qs Cs = Ws jj i,j i,                                                     (3.33) 

 

where Cbi, j [m/kN] is the flexibility coefficient of node i due to a tip force Qbj on the base of 

pile j and Csi, j [m/kN] is the flexibility coefficient of node i due to a skin force Qsj on pile j. The 

flexibility coefficients Cbi, j and Csi, j are obtained directly from Eq. (3.2) and Eq. (3.13), 

respectively. 

 

For a raft of nr nodes Eq. (3.32) can be written in matrix form as: 

 

    Qb Cb = Wb                                                     (3.34) 

 

where: 

{Wb} nr vector of settlements in raft nodes due to base forces 

[Cb] nr* np matrix of raft flexibility coefficients due to unit tip forces on piles 

 

Similarly, Eq. (3.33) for the raft is written as: 

 

    Qs Cs = Ws                                                     (3.35) 
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where: 

{Ws} nr vector of settlements in raft nodes due to skin forces 

[Cs] nr* np matrix of raft flexibility coefficients due to unit skin forces on piles 
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Figure 3-5 Settlement Wbi, j in a node i due to a tip force Qbj on the base of pile j 
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Figure 3-6 Settlement Wsi, j in a node i due to a skin force Qsj = Tj lj on pile j 
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3.2.4 Raft-soil interaction 

 

Mindlin’s solution is used to evaluate the settlement in a point within the soil mass due to a load 

acting beneath the surface. Therefore, the solution is applied for pile problems. Also, Mindlin’s 

solution is particularly convenient for analyzing raft in piled raft problems where the foundation 

level in most cases is relatively deep making contact forces acting deeply beneath the surface. In 

the present analysis, settlements in raft nodes due to contact forces on the raft may be 

determined from Mindlin’s solution, in which flexibility coefficients for a contact force on the 

raft are obtained from Eq. (3.2). This can be carried out directly for all nodes except the loaded 

node. The reason is that at the loaded node c = z. Consequently, the first term in the Eq. (3.2) 

becomes singular when r = 0. In this case, Eq. (3.2) can be used but with replacing only the first 

term by another applicable for the loaded node. The replacement term in Eq. (3.2) is derived by 

converting the point load to an equivalent uniform load and carrying out the integration over the 

loaded area. The replacement term in Eq. (3.2) at the corner of a rectangular loaded area when z 

= c ≠ 0 after integration becomes: 

 

 
 

 
 














b  m

b + m
  

b
+

a  m

a + m
  

a
 

 
 = C

s ln
1

ln
1

2

ν43
1                                 (3.36) 

 

where: 

a, b Sides of the loaded area [m] 

b + am = 22 and  

 

As Mindlin’s solution with c = 0 is equivalent to Boussinesq’s solution (1885), flexibility 

coefficient Ci, i due to a rectangular uniform loaded area when z = c = 0 is obtained from 

Boussinesq’s solution as follows: 
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 
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


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b + m
  

b
+

a  m

a + m
  

a
 

E  
 = C

s

s
i i, ln

1
ln

1

π2

ν1 2

                                 (3.37) 

 

When calculating the raft-soil flexibility coefficients, Eq. (3.37), Eq. (3.2) or Eq. (3.2) with the 

modified term in Eq. (3.36) is used. The settlement Wri, j [m] in a node i on the raft due to a 

contact force Qrj on node j is given by: 

 

Qr Cr = Wr jj i,j i,                                                     (3.38) 

 

where: 

Cri, j   Flexibility coefficient of node i due to a contact force Qrj on node j [m/kN] 

 Cri, j = fi, j  for i  ≠  j 

 Cri, j = Ci, i  for i = j and z = c = 0 

 Cri, j = fi, j  with modified term C1 for i = j and z = c  ≠  0 

 

For a raft of nr nodes, the settlement in matrix form is expressed as: 

 

    Qr Cr = Wr                                                      (3.39) 

 



Empirical with numerical modeling pile group and piled raft 

 

 

3-16 

where: 

{Wr} nr vector of settlements in raft nodes due to contact forces on the raft 

[Cr] nr* nr square matrix of raft flexibility coefficients due to unit contact forces on the raft 

{Qr} nr vector of contact forces on the raft 

 

Equation (3.39) is rewritten as: 

 

    Wr Ks = Qr                                                      (3.40) 

 

where: 

[Ks]  Soil stiffness matrix of the raft, [Ks] = [Cr]-1 

 

The total settlement in the raft due to all forces in the system of piled raft foundation is given by: 

 

       Wr + Ws + Wb = Wt                                              (3.41) 

 

Substituting Eqns (3.34), (3.35) and (3.39) in Eq. (3.41), gives: 

 

          Qr Cr + Qs Cs + Qb Cb = Wt                                    (3.42) 

where: 

{Wt} nr vector of total settlements in the raft due to all forces in the system of piled raft 

foundation 

 

3.2.5 Formulation of soil equations 

 

Let the vector {S} represent the entire settlements in the raft mesh due to all forces in the system 

of piled raft foundation. This vector must have the dimension n = np + nr to include settlements in 

raft nodes and piles together. The vector of entire settlements can be obtained from: 

 

 
 
 

 
Wt

Sp
 = S









                                                       (3.43) 

 

Substituting Eqns (3.31) and (3.42) in Eq. (3.43), gives: 

 

 
           
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









Qr Cr + Qs Cs + Qb Cb 

Qr Jr + Qp Cp + Qs Is + Qb Fb 
 = S                          (3.44) 

 

or 
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Qs Cs + Qb Cb 

Qr Jr + Qs Is + Qb Fb 
 + 

Qr 

Qp 
 

Cr  0  

 0  Cp 
 = S                  (3.45) 
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Equation (3.45) is written in a simplified form as: 

 

      Pr + Q C = S                                                   (3.46) 

 

where {Pr} is given by: 

 

 
        

     











Qs Cs + Qb Cb 

Qr Jr + Qs Is + Qb Fb 
 = Pr                                  (3.47) 

 

 

and the term [C] {Q} is given by: 
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Qr 

Qp 
 

Cr  0  

 0  Cp 
 = Q C                                            (3.48) 

 

where: 

{Q} n vector of pile loads and contact forces 

[C] n * n matrix of flexibility coefficients of piles and raft 

 

Inverting the matrix of flexibility coefficients of piles and raft, Eq. (3.45) becomes: 

 

       Pr Ks - S Ks = Q                                               (3.49) 

 

or 

 

      Pe - S Ks = Q                                                   (3.50) 

 

where [Ks] = [C]-1 is the soil stiffness matrix of piles and raft and is given by: 

 

 
  
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










Kr  0  

 0  Kp 
 = Ks                                                    (3.51) 

 

while the vector {Pe} is given by: 

 

    Pr Ks = Pe                                                     (3.52) 

 

where [Kr] represents soil stiffness of the raft alone. 
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3.2.5.1 Multi-layered soil 

 

Flexibility coefficients described previously can be applied only for isotropic elastic half-space 

soil medium. For finite layer, flexibility coefficients may be obtained as described by Poulos/ 

Davis (1980). As an example, for a point k in a layer of depth h, the flexibility coefficient is 

then: 

 

      f - f = hf j h,j k,j k,
                                             (3.53) 

 

where: 

fk, j(h) Flexibility coefficient for a point k in a layer of depth h due to a unit load 

on point j [m/kN] 

fk, j(∞) Flexibility coefficient for a point k due to a unit load on point j 

in a semi-infinite mass [m/kN] 

fh, j(∞) Flexibility coefficient for a point within the semi-infinite mass directly beneath k, at a 

depth h below the surface due to a unit load on point j [m/kN] 

 

3.2.5.2 Reloading pressure effect 

 

To improve the deformation behavior of the soil, the total settlement of the piled raft is divided 

into two parts. In the first part the ground will settle according to the reloading modulus of 

compressibility Ws [kN/m2] until the soil pressure reaches an overburden pressure qv [kN/m2]. In 

the second part after reaching the load qv [kN/m2] the ground will settle more under pressure qe 

according to the loading modulus of compressibility Es [kN/m2] until reaching the average 

applied pressure qo [kN/m2]. The reloading pressure effect may be taken into consideration by 

dividing the flexibility coefficient into two terms (Figure 3-7) such that: 

 

   Esf 
qo

qe
 + Wsf 

qo

qv
 = f j k,j k,j k,

                                        (3.54) 

 

where: 

fk, j(Ws) Flexibility coefficient calculated with Ws for a point k due to a unit load 

on point j [m/kN] 

fk, j(Es) Flexibility coefficient calculated with Es for a point k due to a unit load on point j [m/kN] 
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Figure 3-7 Loading-settlement diagram 

 

 

3.2.6 Analysis of rigid piled raft 

 

Figure 3-8 shows a rigid piled raft where in this case the settlement is defined by rigid body 

translation wo at the center of the raft and by two rotations θx and θy about x- and y-axes, 

respectively.  
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Figure 3-8 Modeling rigid piled raft 
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Due to the piled raft rigidity, the following linear relation (plane translation) expresses the 

settlement Si at either a node in the raft or a pile that has coordinates (xi, yi) from the geometry 

centroid: 

 

  y +   x + w = S iyioi tantan                                             (3.55) 

 

Equation (3.55) is rewritten in matrix form for the entire piled raft system as: 

 

      X = S
T

                                                      (3.56) 

 

where: 

{Δ} 3 vector of translation wo and rotations tan θy and tan θx  

[X]T 3 * n vector of coordinates x and y 

 

For equilibrium the following conditions must be satisfied: 

 

- The resultant due to external vertical forces acting on the raft must be equal to the sum of 

contact forces and pile loads 

- The moment due to that resultant about either x-axis or y-axis must be equal to the sum of 

moments due to contact forces and pile loads about that axis 

 

Assuming Qi is a symbol representing either pile load Qp or contact force Qr on the mesh, gives: 

 












y . Q + ... + y . Q + y . Q + y . Q = e . N

x . Q + ... + x . Q + x . Q + x . Q = e . N

Q + ... + Q + Q + Q = N

nn332211y

nn332211x

n321

                              (3.57) 

 

where: 

N  Resultant of applied loads acting on the raft [kN] 

N ex  Moment due to resultant about x-axis, Mx = N ex [kN.m] 

N ey Moment due to resultant about y-axis, My = N ey [kN.m] 

ex, ey  Eccentricities of the resultant about x- and y-axes [m] 

xi, yi  Coordinates of the load Qi [m] 

 

Equation (3.57) is rewritten for the entire piled raft foundation in matrix form as: 

 

    Q X = N                                                        (3.58) 

 

where {N} is the vector of resultant and moments. 

 

Substituting Eqns (3.50) and (3.56) in Eq. (3.58), gives the following linear system of equations: 

 

          Pe X -  X Ks X = N
T
                                        (3.59) 
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Solving the above system of linear equations gives wo, tan θx, and tan θy. Then, substituting these 

values in Eq. (3.56), after that in Eq. (3.60), gives the following equation to find the n unknown 

pile loads and contact forces. 

 

        Pe -  X Ks = Q
T
                                              (3.60) 

 

Substituting also the values wo, tan θx and tan θy in Eq. (3.56), gives the n settlements. 

 

3.2.7 Analysis of rigid pile group or flexible raft on rigid pile group 

 

Analysis of a rigid pile group of np piles using the described nonlinear relation is easier than that 

of rigid piled raft. In this case the contact forces {Qr} and settlements on raft nodes {Wt} are 

omitted from above equations. In this case, the vector {Pr} of Eq. (3.47) is given by: 

 

        Qs Is + Qb Fb  = Pr                                           (3.61) 

 

and the term [C] {Q} in Eq. (3.48) is given by: 

 

     Qp Cp = Q C                                                    (3.62) 

 

In the case of a flexible raft in which the group of piles acted on by known loads {Qp} and {Qr}, 

Eq. (3.45) may be used directly to evaluate the settlement of each pile in the group. 

 

3.2.8 Analysis of elastic piled raft 

 

It is possible to treat the raft as an elastic plate on rigid piles. From the finite element analysis of 

the plate, the equilibrium of the raft is expressed as:  

 

     Q - P =  Kg δ][                                                       (3.63) 

 

where: 

{p} 3 * nr vector of applied loads and moments on the raft nodes 

[Kg]  3 nr * 3 nr plate stiffness matrix 

{δ} 3 * nr deformation vector of the raft 

 

Substituting Eq. (3.50) in Eq (3.63), leads to: 

 

                               Pe  S Ks P = Kg δ                                            (3.64) 

 

Considering compatibility between piled raft displacement δi and soil settlement si, the following 

linear system of equations of the piled elastic raft can be obtained: 

 

         Pe P =   Kg + Ks δ                                            (3.65) 
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3.2.9 Iteration method 

 

In this paper, a proposed iteration method is developed to solve the system of linear equations, 

Eq. (3.59), of piled raft. The main idea of this method is that pile stiffness is determined from 

load-settlement relation due to self-settlement of pile. This pile stiffness is simply added to that 

of the raft. The piled raft is solved for each iteration cycle until the compatibility between 

settlements of raft, piles and soil is achieved. The iteration process of the method can be 

described in the following steps: 

 

1 Generate the flexibility matrices due to pile-pile, pile-raft and raft-soil interactions: 

 [Fb], [Is], [Cb], [Cs], [Jr] and [Cr] 

 

2 Find the soil stiffness matrix of the raft due to raft-soil interaction, [Kr] = [Cr]-1 

 

3 Using applied load on the raft, assume an average stress on raft nodes and piles, then find 

the initial loads on piles {Qp} and the initial forces on raft nodes {Qr} 

 

4 From the load-settlement curve according to DIN 4014 [5], find the values of: 

- Soil stiffness matrix of the pile [Kp] 

- Tip forces on piles {Qb} due to pile loads {Qp} 

- Skin forces on piles {Qs} due to pile loads {Qp} 

 

5 Generate the entire stiffness matrix of piles and raft [Ks] by adding the soil stiffness of 

the pile [Kp] computed in step 4 to the soil stiffness of the raft [Kr] 

 

6 Determine the vector {Pr} in Eq. (3.47) due to the contact forces and the computed tip 

and skin forces on piles in step 4. Then, find the vector {Pe} from Eq. (3.52) 

 

7 Carry out the analysis of piled raft, Eq. (3.59) for rigid piled raft or Eq. (3.65) for elastic 

piled raft, to get the pile settlements {Sv} and contact forces {Qr} 

 

8   Compare the settlement from cycle i with that of cycle i + 1 to find the accuracy of the 

solution 

 

9 If the accuracy from step 8 is less than a specified tolerance ε then from the load-

settlement curve according to DIN 4014 [5], determine the new pile loads {Qp} due to 

computed settlements {Sv} and go to step 4 

 

The steps 4 to 9 are repeated until the accuracy reaches to a specified tolerance ε, which means 

that a sufficient compatibility between settlements of piles, raft and soil is achieved in the piles-

raft-soil interface. 
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Assume initial loads on piles { Qp } o 

and initial loads on raft nodes { Qr } o 

Start 

i =0 

i  = Iteration cycle No. 

Find the soil stiffness matrix 
[ Kr ] =[ Cr ] -1   

Generate the flexibility matrices due 
to pile-pile, pile-raft and raft-

raft interactions 
[ Fb ], [ Is ], [ Cb ], [ Cs ], [ Jr ] and [ Cr ] 

From DIN 4014 and due to { Qp },  
find: Pile stiffnesses matrix [ Kp ], 

tip forces { Qb }and skin forces { Qs } 

Solve the system of linear equations  
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and contact forces { Qr }  

End 
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Figure 3-9 Flowchart of the iteration process in the program ELPLA 
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3.3 Case study: Messeturm piled raft 

3.3.1 Description of the problem 

 

Messeturm was the tallest high-rise building in Europe until 1997, Figure 3-10. The building lies 

in Frankfurt city in Germany. It is 256 [m] high and standing on a piled raft foundation.  

 

 
Figure 3-10 Messeturm1 

                                                 
1 http://de.wikipedia.org/wiki/Messeturm_(Frankfurt) 

http://upload.wikimedia.org/wikipedia/commons/2/2a/Frankfurt_am_Main_Messeturm.jpg
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Using instruments installed inside this foundation, an extensive measuring program was 

established to monitor the behavior of the building. Because these instruments record raft 

settlements, raft contact pressures and loads on pile heads and along pile shafts, the building was 

a good chance for many authors to verify their analysis methods for piled raft. Since Messeturm 

was built many authors have studied its behavior. Some of them are Sommer (1989), Sommer/ 

Katzenbach (1990), Thaher (1991), Sommer et al. (1991), EL-Mossallamy (1996), Katzenbach et 

al. (2000), Reul/ Randolph (2003) and Chow/ Small (2005). 

 

Figure 3-11 shows a layout of Messeturm with the piled raft according to Chow/ Small (2005). 

The building has a basement with two underground floors and 60 stories with a total estimated 

load of 1880 [MN]. The foundation is a square piled raft of 58.8 [m] side founded on Frankfurt 

clay at a depth 14 [m] under the ground surface. Raft thickness varies from 6 [m] at the middle 

to 3 [m] at the edge. A total of 64 bored piles with equal diameters of 1.3 [m], are arranged 

under the raft in 3 rings. Pile lengths vary from 26.9 [m] for the 28 piles in the outer ring to 30.9 

[m] for the 20 piles in the middle ring and to 34.9 [m] for the 16 piles in the inner ring. The 

subsoil at the location of the building consists of gravels and sands up to 8 [m] below the ground 

surface underlay by layers of Frankfurt clay extending to great depth of more than 100 [m] 

below the ground surface. The groundwater level lies at 4.75 [m] under the ground surface.   

 

The construction of Messeturm started in 1988 and finished in 1991. According to Katzenbach et 

al. (2000), the recorded settlement at the center of the raft in March 1990 was 8.5 [cm], while the 

last recorded settlement in December 1998 was 14.4 [cm] according to Reul/ Randolph (2003). If 

Messeturm stands on a raft only, the expected settlement would be between 35 [cm] and 40 [cm] 

based on geotechnical studies according to Sommer (1989). Therefore, to reduce the settlement, 

a piled raft was considered where the expected final settlement in this case would be between 15 

[cm] and 20 [cm] according to Sommer/ Katzenbach (1990). Using the available data and results 

of the Messeturm piled raft, which have been discussed in details in the previous references, the 

present piled raft analysis is evaluated and verified. Thus by dealing the piled raft as a rigid 

foundation where the rigid analysis of piled raft is considered as an easy method to check results 

of any other complicated models. 
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Figure 3-11 Layout of Messeturm with piled raft after Chow/ Small (2005) 

 

 

3.3.2 Analysis of the piled raft 

 

A series of comparisons are carried out to evaluate the nonlinear analysis of piled raft using DIN 

4014 [5] for load-settlement relation. In which, results of other analytical solutions and 

measurements are compared with those obtained by the present analysis. In the comparisons the 

present analysis is termed NPRD. 

 

Taking advantage of the symmetry in shape, soil and load geometry about both x- and y-axes, the 

analysis is carried out for a quarter of the piled raft. The raft is divided into elements with 

maximum length of 2.0 [m] as shown in Figure 3-12. Element sizes in x- and y-directions for a 

quarter of the raft are: 

 

 2 * 2.2 + 2.69 + 2 * 1.74 + 0.89 + 3 * 2.35 + 2.06 + 2.65 + 1.76 + 2 * 2.2 = 29.4 [m] 

 

Similarly, piles are divided into elements with 2.0 [m] in maximum length. 
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B/2=29.4 [m]

Pile length 26.9 [m]

Pile length 30.9 [m]

Pile length 34.9 [m]

 
 

Figure 3-12 Mesh of Messeturm piled raft with piles (Max. element length = 2.0 [m]) 

 

 

a) Comparison with Randolph’s analysis 

 

To examine NPRD for the Messeturm piled raft, results are compared with those using 

Randolph’s analysis, which was carried out by EL-Mossallamy (1996). The raft is considered to 

be rigidly supported on equal rigid piles with an average length equal to 30.15 [m]. A soil layer 

of H = 90 [m] with a constant elastic modulus is considered. Two cases of analyses are carried 

out with two different soil parameters as indicated in Table 3-1. For NPRD, the load-settlement 

relation is determined using an average undrained cohesion of cu = 300 [kN/m2] in both cases. 

The uplift pressure on the raft due to groundwater is considered to be Pw = 275 [kN/m2]. 

Consequently, the total effective applied load on the raft including own weight of the raft and 

piles is assumed to be N = 1600 [MN]. 

 

Table 3-2 summarizes the results of the immediate and total settlements for Randolph’s analysis 

(1994) and NPRD while Table 3-3 summarizes the results of the bearing factors of piled raft for 

both of the analyses. Although the principles of both of the analyses are different, the results 

indicate a good agreement in settlement and a difference in bearing factor of piled raft ranges 

from 3.4 [%] to 7.7 [%]. 
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Table 3-1 Soil properties used in Randolph’s analysis and NPRD 
 
 

Case No. 

 
Undrained conditions 

 
Drained conditions 

 
Es [MN/m2] 

 
νs [-] 

 
E´s [MN/m2] 

 
ν´s [-] 

 
Case 1 

 
70.4 

 
0.5 

 
62.4 

 
0.33 

 
Case 2 

 
91.4 

 
0.5 

 
81.0 

 
0.33 

 

Table 3-2 Settlements s [cm] (Randolph’s analysis vs. NPRD) 
 
 

Case No. 

 
Immediate 

 
Total 

 
Randolph’s 

analysis 

 
NPRD 

 
Randolph’s 

analysis 

 
NPRD 

 
Case 1 

 
13.0 

 
12.9 

 
17.1 

 
18.1 

 
Case 2 

 
10.0 

 
10.1 

 
13.7 

 
14.0 

 

Table 3-3 Bearing factors of piled raft αkpp [%] (Randolph’s analysis vs. NPRD) 
 
 

Case No. 

 
Immediate 

 
Total 

 
Randolph’s 

analysis 

 
NPRD 

 
Randolph’s 

analysis 

 
NPRD 

 
Case 1 

 
35.2 

 
31.8 

 
44 

 
39 

 
Case 2 

 
35.2 

 
27.5 

 
44 

 
38 

 

 

b) Comparison with Thaher’s analysis 

 

To analyze piled raft, Thaher (1991) had presented an analytical model using equivalent raft 

method, which was checked by the centrifuge model test results. He applied his model to the 

Messeturm piled raft to assess the rigid settlement.    
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3.3.3 Soil properties 

 

The average clay properties used in Thaher’s analysis can be described as follows: 

 

Modulus of compressibility 

Based on the back analysis presented by Amann et al. (1975), the distribution of modulus of 

compressibility for loading of Frankfurt clay with depth is defined by the following empirical 

formula:  

 z  E = E sos 0.35 + 1                                                  (3.66) 

 

while that for reloading is: 

 mMN/ 70 2  = W s                                                    (3.67) 

 

where: 

Es  Modulus of compressibility for loading [MN/m2] 

Eso  Initial modulus of compressibility, Eso = 7 [MN/m2] 

z Depth measured from the clay surface, [m] 

Ws  Modulus of compressibility for reloading [MN/m2] 

 

Undrained cohesion 

The undrained cohesion cu of Frankfurt clay increases with depth from cu = 100 [kN/m2] to cu = 

400 [kN/m2] in 70 [m] depth under the clay surface according to Sommer/ Katzenbach (1990). 

To carry out NPRD, an average undrained cohesion of cu = 300 [kN/m2] is considered. 

 

Poisson’s ratio 

Poisson’s ratio of Frankfurt clay is taken to be νs = 0.25 [-]. 

 

 

To carry out the analysis, the subsoil under the raft is considered as indicated in the boring log of 

Figure 3-13 that consists of 10 soil layers. The total depth under the ground surface is taken to be 

102.83 [m]. 
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Figure 3-13 Boring log 

 

 

 

 

 

 

 

 

BP1 

G+S 
3.00 

E = 75000[kN/m2],Fhi = 30[°] 
W = 225000[kN/m2],C = 0[kN/m2] 
Gam = 18[kN/m3],Nue = 0.25[-] 

G+S 
4.75 

E = 75000[kN/m2],Fhi = 30[°] 
W = 225000[kN/m2],C = 0[kN/m2] 
Gam = 8.19[kN/m3],Nue = 0.25[-] 

T 
22.83 

E = 19000[kN/m2],Fhi = 0[°] 
W = 70000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
32.83 

E = 44000[kN/m2],Fhi = 0[°] 
W = 70000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
42.83 

E = 68000[kN/m2],Fhi = 0[°] 
W = 70000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
52.83 

E = 93000[kN/m2],Fhi = 0[°] 
W = 93000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
62.83 

E = 117000[kN/m2],Fhi = 0[°] 
W = 117000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
72.83 

E = 142000[kN/m2],Fhi = 0[°] 
W = 142000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
82.83 

E = 166000[kN/m2],Fhi = 0[°] 
W = 166000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
92.83 

E = 191000[kN/m2],Fhi = 0[°] 
W = 191000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

T 
102.83 

E = 215000[kN/m2],Fhi = 0[°] 
W = 215000[kN/m2],C = 300[kN/m2] 
Gam = 8.7[kN/m3],Nue = 0.25[-] 

TF = 12.83 [m] 

TK = 8.00 [m] 
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Table 3-4 lists the results of settlement, bearing factor of piled raft and tip resistance obtained by 

NPRD compared with those obtained by Thaher (1991). The table shows that settlement and 

bearing factor of piled raft for the both analyses are nearly the same. Only a difference of 0.6 

[MN/m2] in the maximum tip resistance is found. 

 

In Table 3-5, load on each pile in inner, middle and outer rings obtained by both NPRD and the 

centrifuge model test by Thaher (1991) are shown. Also, the table includes the measured total 

pile loads after the completion of the structural frame, presented by Sommer et al. (1991). The 

table indicates that results are in a good agreement. 

 

Also, Table 3-5 shows that the piles transfer the load to the soil mainly by skin friction, as 

observed from the measurements (Katzenbach et al. (2000)). The measurements indicate that the 

load distribution within the pile group is quite homogeneous. This behavior is also noticed in 

NPRD not only for the pile load but also for the pile settlement. 

 

As shown in Table 3-6, NPRD can introduce the individual settlement in the pile due to pile load 

itself or due to pile-pile and pile-raft interactions. Table 3-6 shows that the most of the 

settlement is due to self settlement of the pile compared with the settlement due to pile-pile and 

pile-raft interactions for loading or reloading. The self-settlement of the pile ranges between 52 

and 55 [%] of the total settlement in the pile. 

 

Table 3-4 Comparison between results obtained by Thaher’s analysis and NPRD 
 
 

Analysis 

 
Settlement  

sr 

[cm] 

 
Bearing factor 

αkpp 

[%] 

 
Min. tip 

resistance 

[MN/m2] 

 
Max. tip 

resistance 

[MN/m2] 
 
Thaher’s analysis 

 
19.00 

 
40.00 

 
1 

 
1.5 

 
NPRD 

 
18.77 

 
40.44 

 
1 

 
2.1 

 

Table 3-5 Pile load for NPRD, centrifuge model test and measured results 
 
 

Pile ring 

 
NPRD 

 
Total pile 

load from 

centrifuge 

model test  

[MN] 

 
Measured 

total pile load 

[MN] 

 
Tip force 

[MN] 

 
Shaft force 

[MN] 

 
Total pile 

load 

[MN] 

 
Inner ring 

 
2.71 

 
8.55 

 
11.26 

 
14 

 
11 

 
Middle ring 

 
2.74 

 
7.57 

 
10.31 

 
13 

 
13 

 
Outer ring 

 
2.72 

 
6.59 

 
9.31 

 
10 

 
10 
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Table 3-6 Settlement in piles 
 
 

 

Pile ring 

 
Self 

settlement 

sp 

[cm] 

 
Settlement due to pile-pile  

and pile-raft interactions 

 
Total 

settlement 

sr 

[cm] 

 
Self/ Total 

 

sp/sr 

[%] 

 
Loading 

se 

[cm] 

 
Reloading 

sw 

[cm] 
 
Inner ring 

 
9.75 

 
4.97 

 
4.05 

 
18.77 

 
52 

 
Middle ring 

 
10.29 

 
4.78 

 
3.70 

 
18.77 

 
55 

 
Outer ring 

 
9.86 

 
5.10 

 
3.81 

 
18.77 

 
53 

 

 

Comments 
 

The maximum difference between the settlements in step i and next step i + 1 is considered as an 

accuracy number. In this case study, the accuracy number was chosen to be 0.0001 [cm].  

 

For a single run of analysis, the results were obtained in relatively short time (17 [Sec] for 

analysis a and 1.2 [Min] for analysis b using Pentium 4 PC with 512 MB RAM). This is related 

to the following parameters: 

 

- Flexibility coefficients due to pile-pile interaction are determined only for two 

forces: shaft and base forces 

 

- As the settlement due to load on pile itself is determined from DIN 4014 [5], flexibility 

coefficients can be determined without numerical problems using closed form equations 

instead of equations that must be evaluated by numerical integration 

 

- There is no need to determine a global stiffness matrix for the soil since the 

flexibility matrix is generated every step in the iteration cycle 

 

- Instead of determining flexibility coefficients due to pile-pile interaction from settlement 

equations, the coefficients are determined from the load-settlement relation according to 

DIN 4014 [5] 

 

This case study shows that NPRD is not only an acceptable method to analyze piled raft but also 

a practical one for analyzing large piled raft problems. Beside that NPRD gives a good 

agreement with previous theoretical and empirical nonlinear analyses of piled raft, it takes less 

computational time compared with other complicated models using three dimension finite 

element analyses. As further comparative example to proof that an analysis of Messeturm using 

three dimensional finite element analysis after Randolph (1994) and Reul/ Randolph (2003) gave 

a settlement of 17.4 [cm] at the center while that of NPRD gave 18.77 [cm]. 
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4 Analyzing friction piles in clay soil 

4.1 Introduction 

 

Settlements of a foundation may be calculated using either flexibility or stress coefficients-

technique. Analyzing foundation on elastic soil layers may be carried out using flexibility 

coefficients-technique, while that on consolidated soil is preferred to be carried out by stress 

coefficients-technique. In this case, compression index of the soil is used to define the 

consolidation characteristics of the clay. It is known that the compression index Cc, which is 

obtained from the e-log σ curve (e: void ratio, σ: consolidation pressure) of the consolidation 

test, will be the same for any stress range on the linear part of the curve, while the coefficient of 

volume change mv (inverse of the modulus of compressibility Es = 1/mv) will vary according to 

the stress range (Figure 4-1). Therefore, to calculate the real consolidation settlement for a thick 

clay layer and because the stress from the foundation varies with depth, a variable modulus of 

compressibility must be obtained, even for homogenous layer. 
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Figure 4-1 Void ratio-stress relationship 

 

 

The problem when analyzing a foundation on clay layer is the determination of the non-linear 

increment of the vertical stress on the layer due to the unknown contact pressure at the soil-pile 

interface. Griffths (1984) presented charts for average vertical stress increment beneath a corner 

of a uniformly loaded rectangular area based on numerical integration of existing solutions. 

Masih (1993) and (1994) considered the effect of settlement caused by cohesive soil 

consolidation on the structure. The analysis dealt with elastic speared footings using one-point 

method. El Gendy (2003) introduced an analysis of a rigid circular raft on a clay layer by 

calculating the stress at mid-depth of soil element. The increment of vertical stress is obtained by 

numerical integration. El Gendy (2006) developed stress coefficients for triangular loaded 

elements and point load acting on the entire clay sub-layer through closed form equations. These 

coefficients can be used for any irregular shape of foundations on multi-clay layers. Analyses 

carried out by the methods mentioned previously were applied on spared footings and rafts on 

clay. 
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The problem of raft on clay soil taking into account soil-structure interaction is a complicated 

nonlinear problem as shown by El Gendy (2006). It will be more complicated for piled raft. This 

is because the increment of stress in soil depends on the unknown contact pressure at the soil-

pile-raft interface. In rigid piled raft, the contact pressure distribution at the soil-pile-raft 

interface on a homogenous soil layer is independent from elastic properties of the soil. This 

advantage reduces considerably the analysis if the contact pressure is obtained from other 

available solution. In this case half of the problem is solved. Consequently, using the known 

contact pressure from other analyses enables to derive a practical solution for single pile, pile 

groups and piled raft on clay soil. 

 

El Gendy (2007) presented a numerical procedure to determine the final consolidation settlement 

of friction piles in clay soil using stress coefficients-technique. He derived closed form equations 

for determining the increment of non-linear stress in clay layers caused by contact forces 

generated at the pile-soil interface. Using these stress coefficients, an analysis for single pile, 

pile groups and piled raft on clay soil to predict the consolidation settlement may be carried out. 

In the analysis, the contact pressure is obtained from the elastic solution of the problem. This 

enables to determine the nonlinear increment of stress in the soil layers. Consequently, the 

consolidation settlement can be calculated using the compression index and void ratio 

parameters. The computation may be carried out only at one point on the raft to get the 

settlement. 

 

This chapter described stress coefficients developed by El Gendy (2007) to determine the final of 

consolidation settlement of friction piles in clay soil. Friction pile is analyzed as a single pile or 

as a member in pile groups or piled raft. However, these coefficients can be applied on elastic or 

rigid piled raft, only the rigid piled raft will be used to show the validity of the method. 

Furthermore, piled raft is usually used for high structure with high rigidity. Analysis of an elastic 

piled raft may be carried out similar to that of rafts on clay layers proposed by El Gendy (2006). 
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4.2 Numerical Modeling 

4.2.1 Formulation of stress coefficients 

 

In the analysis, the pile is divided into a number of shaft elements with m nodes and a circular 

base as shown in Figure 4-2a. To carry out the analysis, pile shaft elements are represented by 

line elements as indicated in Figure 4-2b. All stresses acting on shaft elements and on the base 

are replaced by a series of concentrated forces acting on line nodes. 
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Figure 4-2 Pile geometry and elements 

 

 

Pioneer authors of pile analysis such as Poulos/ Davis (1968) and Butterfield/ Banerjee (1971) 

integrated numerically coefficients of flexibility using Mindlin’s solution for point load within a 

semi-infinite mass. Analysis of pile using numerical coefficients increases computation time 

significantly, especially in large pile problems. However, the present analysis depends on stress 

coefficients determined from elastic theory using Mindlin’s solution an analytical derivation of 

coefficients of stresses is presented. Closed form equations for these coefficients are derived in 

the next paragraphs. 
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4.2.1.1 Stress coefficient ci, j(k) of layer k at point i due to a unit force on point j  

 

It is convenient when calculating consolidation settlement to consider the stress occurs on the 

vertical direction only. In this case Poisson’s ratio of the soil may be eliminated from stress 

equations. Stress coefficient can be derived from Mindlin’s equation for determining the 

displacement when omitting Poisson’s ratio from this equation. The displacement at point i due 

to a point load acting at point j beneath the surface in a semi-infinite mass (Figure 4-3) is 

expressed as: 

)()( zI
E

Q
 = zw j i,

s

j

i                                                       (4.1) 

 

where: 

Es Modulus of elasticity of the soil [kN/m2] 

Qj  Point load acting at point j in the soil mass [kN] 

w(z)i Displacement in point i at depth z under the surface [m] 

Ii, j(z)  Displacement factor of a node i at depth z under the surface 

 due to a load at point j [1/m] 
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Figure 4-3 Geometry of Mindlin’s problem 
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The displacement factor Ii, j(z) when eliminating Poisson’s ratio is given by: 
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                           (4.2) 

 

where: 

c Depth of the point load Qj from the surface [m] 

z Depth of the studied point i from the surface [m] 

r  Radial distance between points i and j [m] 

 

For a finite layer k (Figure 4-4), the displacement in the entire layer may be obtained from: 

 

iii z w- z w= kw )()()( 21                                           (4.3) 

where: 

w(k)i Displacement in a layer k beneath i [m] 

w(z1)i Displacement in semi-infinite mass beneath i, at a depth z1 under the surface [m] 

w(z2)i Displacement in semi-infinite mass beneath i, at a depth z2 under the surface [m] 

z1 Start depth of the soil layer k from the surface [m] 

z2 End depth of the soil layer k from the surface [m] 

 

Displacement in a soil layer k may be also expressed as: 

 

hk  
E

=  kw j i,

s

i  )(σδ
1

)(                                                   (4.4) 

where: 

δσi, j(k)  Stress in a soil layer k beneath i due to a load at point j [kN/m2] 

h   Thickness of the soil layer k [m] 
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Figure 4-4 Settlement in a soil layer (k) 

 

 

The stress δσi, j(k) in the soil layer can be obtained by equating Eq. (4.3) to Eq. (4.4), which leads 

to: 
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Equation (4.5) is rewritten in a simple form as: 
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or 
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jj i,j i, )()(σδ                                                     (4.7) 
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where: 

Ii, j(z1)  Displacement factor due to a load at point j in semi-infinite mass 

beneath i, at a depth z1 under the surface [1/m2] 

Ii, j(z2)  Displacement factor due to a load at point j in semi-infinite mass 

beneath i, at a depth z2 under the surface [1/m2] 

ci, j(k)  Stress coefficient for a layer k beneath i due to a unit load at point j [1/m2] 

 

The stress coefficient ci, j(k) is given by: 
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           (4.8) 

 

 

4.2.1.2 Stress coefficient fi, b(k) of a layer k at node i due to a unit force on the base b  

 

Replacing the radial distance r in Eq. (4.8) by the radius of the base ro [m] gives the stress 

coefficient fi, b(k) of a layer k at node i due to a unit force Qb = 1 [kN] acting on the base b.  

 

4.2.1.3 Stress coefficient fb, b(k) of a layer k at the base b due to a unit force on the base itself 

 

The base b of the pile has a circular loaded area of radius ro [m] and a uniform load q = Qb / π ro
2 

[kN/m2] as shown in Figure 4-5. The stress coefficient fb, b(k) of a layer k at the base center b due 

to a unit load Qb = 1 [kN] at the base itself can be obtained from: 
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The integration of the stress coefficient can be obtained analytically as: 
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Figure 4-5 Geometry of the base to find the stress coefficient δ(k)b, b at the center 

 

 

4.2.1.4 Stress coefficient fi, j(k) of a layer k at node i due to a unit shear force on a node shaft j 

 

To avoid the significant computations when determining the stress coefficients due to shaft 

stress, the shaft stress τ [kN/m2] is replaced by an equivalent line load. The shaft element j of the 

pile has a length l [m] and a line load T = Qsj / l [kN/m] as shown in Figure 4-6. The stress 

coefficient fi, j(k) for a layer k at a node i due to a unit load Qsj = 1 [kN] at a shaft element j can 

be obtained from: 

 

   dc zIzI
h

  
l

1
 = kf

l

l
j i,j i,j i, 

2

1

)(-)(
1

)( 21                                     (4.11) 

 

The integration yields to: 
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where terms I1 to I5 are given by: 
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where: 

l1  Start depth of the line load T or the shear stress τ from the surface [m] 

l2  End depth of the line load T or the shear stress τ from the surface [m] 

l  Length of the line load T or the shear stress τ [m] 

r1  Radial distance between point i and j [m] 
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Figure 4-6 Geometry of the line load to find the stress coefficient δ(k)i, j at the center 

 

 

4.2.1.5 Stress coefficient fb, j(k) of a layer k at the base b due to a unit shear force on a node 

shaft j 

 

The pile has a radius ro [m], while the shaft element j has a length l [m] and a shear stress τ = Qsj 

/ 2 π ro l [kN/m2] as shown in Figure 4-7. The stress coefficient fb, j(k) of a layer k at the base 

center b due to a unit load Qsj = 1 [kN] at a shaft element j can be obtained from: 

 

 
2

1

θ)(-)(
1

 π2
)( 21

2π

0

l

l
j i,j i,j b,

d dc zIzI
h

  
l 

1
 = kf                            (4.18) 

 

The integration yields to: 

 

 J + J + J + J + J 
 l 

= kf
j b, 54321

 π8

1
)(                                      (4.19) 

 

Replacing r1 by ro in Eqns (4.13) to (4.17) gives terms J1 to J5. 
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Figure 4-7 Geometry of cylindrical surface stress to find the stress coefficient at the center 

 

 

4.2.2 Modeling single pile 

4.2.2.1 Increment of vertical stress 

 

A deeply extended clay layer is considered to simulate the half-space soil medium. The layer is 

subdivided into l sub-layers of equal thickness as shown in Figure 4-8. The increment of vertical 

stress in a soil layer k at a point i is attributed to stresses caused by all contact forces on that 

layer. 
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Figure 4-8 Pile in a deeply extended clay layer 

 

 

Considering a point i that lies on the pile axis, the increment of vertical stress in a soil layer k 

due to shear forces Qsj on all m nodes and due to the base force Qb is expressed as: 

 

Qb kf + Qs kf  = k
b i,jj i,

m

j

)()()σ(
1=

                                       (4.20) 

where: 

j-1 and j  Node number of element j 

Δσ(k)  Increment of vertical stress in a soil layer k at pile i [kN/m2] 

Qsj   Shear force on node j [kN] 

Qb   Force on the base b [kN] 
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4.2.2.2 Consolidation settlement 

 

Using clay properties Cc and eo, the consolidation settlement due to all contact forces on a pile is 

given by: 

 


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





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
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l

k o

o

o

c  
k

k  k
   

e  

h C
  Sc

1 )(σ

)σ()(σ
log

1
                                       (4.21) 

                              

where: 

Sc Consolidation settlement of the pile i [m] 

Cc Compression index [-] 

eo Initial void ratio [-] 

σo(k)  Initial overburden pressure in a layer k [kN/m2] 

l  Number of clay layers 

 

4.2.2.3 Contact pressure along the pile 

 

Due to the natural geometry of the pile where the length is much greater than the diameter, the 

pile in vertical direction can be considered as a rigid body. In rigid body motion, points on the 

rigid body move downward with a constant displacement. Many authors solved the problem of 

contact pressure distribution that gives a constant displacement in the half-space medium at all 

points in a rigid pile. Some of them are Poulos/ Davis (1968) and Butterfield/ Banerjee (1971). It 

is found that the contact pressure is independent on the elastic constants of the half-space 

medium. El Gendy (2003) showed that the contact pressure distribution under a rigid raft on a 

finite clay layer is independent from the soil properties. El Gendy (2006) showed also that the 

distribution of contact pressure for rafts on deeply extended clay layer is quite similar to that on 

half-space medium of elastic layer. This concept is used to determine the consolidation 

settlement on an extended clay layer. The stress causing a constant elastic displacement in the 

half-space medium must also cause a constant consolidation settlement in a deeply extended clay 

layer. Therefore, the formula used to determine the contact pressure distribution along a rigid 

pile on elastic medium is also valid for a rigid pile on consolidated medium using the soil 

properties Cc and eo. Consequently, the contact pressure becomes known for the problem. In this 

case, problem unknowns are considerably reduced to only the uniform consolidation settlement. 

Available formula used to determine the contact pressure along a rigid pile is presented by El 

Gendy (2007). The contact force on a pile of n nodes, Figure 4-2, is given by: 

 

k 

k Ph

 = Q
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n
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n

=i

j i,

n

j=

i





11

1
                                                   (4.22) 

 

where: 

Qi  Contact force on node i [kN] 

Ph Force on the pile head [kN] 

ki, j Stiffness matrix coefficient 
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The stiffness matrix coefficients in Eq. (4.22) depend only on the geometry of pile elements and 

soil layers. To get these coefficients, soil flexibility matrix is generated first with omitting soil 

elastic properties from flexibility equations by replacing modulus of elasticity by 1.0 and 

Poission’s ratio by 0.0. Then, inverting flexibility matrix, gives the soil stiffness matrix, which 

contains the required coefficients. 

 

4.2.3 Modeling pile groups and piled raft 

 

Only piled raft analysis is presented. Freestanding raft is a special case of piled raft without 

contacting between raft and soil. It can be analyzed in the same manner of piled raft. Consider 

the piled raft of a centric load shown in Figure 4-9 where the settlement in this case is defined by 

the rigid body translation Sc at the center (xc, yc) of the raft. 

 

4.2.3.1 Increment of vertical stress 

 

Equation (4.20) for the increment of vertical stress in a soil layer k under the center (xc, yc) of the 

piled raft may be rewritten in general form as: 

 

Q kI  = k
jj i,

n

j

c )()(σ
1=

                                                (4.23) 

where: 

Δσc(k) Increment of vertical stress in a soil layer k under the center of the raft [kN/m2] 

Qj  Contact force on node j [kN] 

n Total number of contact nodes on the piled raft 

Ii, j(k)  Stress coefficient for layer k under node i on the raft 

 due to a unit force on node j [1/m2] 

 

For pile-pile interaction or pile-raft interaction the stress coefficients Ii, j(k) are determined from 

Eq. (4.8) to Eq. (4.19), while those for raft-raft interaction or raft-pile interaction are determined 

according to El Gendy (2006). 
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Figure 4-9 Modeling piled raft 
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4.2.3.2 Consolidation settlement 

 

The consolidation settlement due to all contact forces on the piled raft under the center of the raft 

is given by: 
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4.2.3.3 Contact pressure on the piled raft nodes 

 

Similar to Eq. (4.22), the contact force on a node i of the piled raft is given by: 
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where N [kN] is the resultant of applied loads acting on the raft. 
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4.3 Numerical Results 

4.3.1 Test example: Verification of a piled raft on a deeply extended clay layer 

 

A square raft of a side L = 10.0 [m] on a deeply extended clay layer is chosen to verify the 

present analysis of a piled raft on a clay layer. The raft is supported by 25 piles. Each pile is 10.0 

[m] long and 0.5 [m] in diameter. Piles are spaced at centers on a 2.0 [m] square grid as shown 

in Figure 4-10. The raft is subjected to a centric vertical load of N = 15 [MN]. To check the 

accuracy of the analysis, the raft with piles is analyzed for two different cases: 

 

1. Freestanding raft (pile groups) 

2. Piled raft  

 

1
0
.0

 [
m

] 
 

 

  

10.0 [m] 

a 

b 

c c 

b 

a 

 
 

 

Figure 4-10 Mesh of raft with piles 

 

 

4.3.1.1 Clay properties 

 

The clay is assumed to have the following properties: 

 

Term of compression index and initial void ratio  Cc / (1 + eo)  = 0.001 [-] 

Dry unit weight of the clay     γs  = 18.5  [kN/m3] 
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4.3.1.2 Analysis of the raft 

 

The raft is subdivided into 100 square elements; each is 1.0 [m] side, while the pile is subdivided 

into 5 line elements of each 2.0 [m] length. The contact pressure distribution along piles and 

under the raft is obtained with the assumption of a semi-infinite soil layer using the elastic 

analysis. In consolidation settlement calculation, the clay layer is considered as semi-infinite soil 

layer when the clay has a deep thickness of z = 100 [m]. The clay layer is subdivided into sub-

layers each of thickness h = 20.0 [m]. Definition of rigid body movement can be used to verify 

the analysis. For a rigid body subjected to a vertical centric load, the body moves downward 

with a uniform displacement. Therefore, the consolidation settlement for the freestanding and 

piled rafts must be uniform on all points on rafts. In the analysis of raft as rigid body, computing 

the consolidation settlement at the raft centroid is sufficient. But to check the linearity of the 

consolidation settlement, settlements are determined for all points on raft. 

 

4.3.1.3 Results and discussions 

 

Consolidation settlements at sections a to c (Figure 4-10) for the freestanding raft are shown in 

Figure 4-11, while those for piled raft are shown in Figure 4-12. Although the consolidation 

settlement is determined under all points on the raft, the consolidation settlement is distributed 

linearly under the raft with maximum difference 4 [%] in case of a freestanding raft and 3 [%] in 

case of piled raft in respect to fitting curves. The piled raft bearing factor is found to be αkpp = 90 

[%], this is related to arranging piles in narrow distances. Consequently, the difference in 

consolidation settlements for both cases is small. 
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Figure 4-11 Consolidation settlement at sections a to c for freestanding raft 
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Figure 4-12 Consolidation settlement at sections a to c for piled raft 

 

 

4.3.2 Case study 1: Piled raft of Stonebridge Tower 

 

Stonebridge Tower piled raft analysis and measurements discussed by Hemsley (2000) and 

reported by Cooke et al. (1981) are considered to check the accuracy of the present analysis. 

Stonebridge is a tower of 16-storey floors at Stonebridge Park in North London, England. The 

tower is 43 [m] high. The foundation is a rectangular piled raft of area 43.3 [m] by 19.2 [m]. The 

estimated total load on the raft gives an average applied uniform load of 187 [kN/m2]. Raft 

thickness is 0.9 [m]. A total of 351 bored piles are located under the raft. All piles have a length 

of l = 13 [m] and a diameter of D = 0.45 [m]. Piles are arranged on 1.6 [m] by 1.5 [m] grid. 

Figure 4-13 shows a mesh of Stonebridge Tower raft with piles. The tower is founded on a thick 

layer of London clay which, at this site, extends to the ground surface. As the building has no 

underground floors, raft is located close to the ground surface. 

 

The tower was constructed between 1973 and 1975, the recorded average settlement of the raft 

was about 1.8 [cm] after four years from the end of construction. Later measurements indicate 

that differential raft settlement is small, because the stiffness of the cross-wall superstructure is 

high. Padfield/ Sharrock (1983) modeled the raft by plate-bending finite elements, with an 

equivalent raft thickness of 4.5 [m] to take account of the stiffness of the superstructure. The soil 

is treated as a multi-layered elastic half-space subjected to loads both at the surface and at depth 

at the pile locations. Raft-pile interaction is neglected and an iterative process is used to match 

raft and soil settlement. They obtained a good agreement between the observed and computed 

results. The foundation of Stonebridge Tower is an ideal case study to verify the present analysis 

because conditions of this piled raft coincide with the assumptions of the present analysis. The 

piled raft is a full rigid on a deeply extended clay layer. Using available data and results of 

Stonebridge Tower piled raft the present analysis is evaluated and verified for analyzing a piled 

raft on clay soil. 
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43.3 [m]

 
 

Figure 4-13 Mesh of Stonebridge Tower raft with piles 

 

 

To show the difference between results when analyzing piled raft of Stonebridge Tower by 

methods that use variable soil modulus, piled raft of Stonebridge Tower is analyzed by the 

following methods: 

 

- Nonlinear analysis of piled raft using DIN 4014 (NPRD) 

- Nonlinear analysis of piled raft using hyperbolic function (NPRH) 

- Linear analysis of piled raft (LPR) 

 

The method NPRD was developed by El Gendy et al. (2006), while those of NPRH and LPR 

were developed by El Gendy (2007). 

 

4.3.2.1 Soil properties 

 

The following section describes all soil parameters and constants, those used to carry out the 

present analysis and other selected methods for comparison. London clay is classified as  

overconsolidated clay. The undrained cohesion of London clay increases with depth and can be 

approximated according to Hong et al. (1999) by the following linear relation: 

 

z =cu 67.6150                                                        (4.26) 

 

where: 

cu  Undrained cohesion of London clay [kN/m2] 

z Depth measured from the clay surface [m] 

 

Hong et al. (1999) used a ratio of 200 between the shear modulus G and the undrained cohesion 

Cu to get a variable shear modulus of the soil.  

 z =c =G u 67.6150200200                                             (4.27) 
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The relationship between the shear modulus G and modulus of elasticity E is given by: 

 
E

=G 
s )ν1(2 

                                                     (4.28) 

Substituting Eq. (4.27) into Eq. (4.28) and taking Poisson’s ratio of the clay s = 0.25 [-] leads 

to: 

 z +  E = E o 0.0445 1                                                 (4.29) 

where: 

G Shear modulus [kN/m2] 

E  Modulus of elasticity of London clay [kN/m2] 

s  Poisson’s ratio of the soil [-] 

Eo  Initial modulus of compressibility, Eso = 75000 [kN/m2] 

 

A relationship between the modulus of compressibility, compression index and initial void ratio 

for overconsolidated clay (σo + Δσav > σc) may be expressed as (Mayne/ Poulos (1999)): 
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where: 

Es  Modulus of compressibility of London clay [kN/m2] 

Cr  Recompression index [-] 

σv Stress in soil, σv = σo + Δσav [kN/m2] 

σc Preconsolidation pressure [kN/m2] 

Δσav Average vertical stress increase in the clay [kN/m2] 

 

The term of recompression index and initial void ratio can be obtained by equating Eq. (4.30) to 

Eq. (4.29) directly under piles at z = 15 [m]. The average vertical stress which increases at this 

depth may be approximated by distributing the raft pressure in the soil with a slope of 1:2.  

 

Term of recompression index and initial void ratio for the whole layer is given by: 

 

 
0045.0

 1
 =

e+ 

C

o

r                                                     (4.32) 

 

To carry out the analysis by the NPRD method, an average undrained cohesion of cu = 200 

[kN/m2] is considered. Russo (1998) suggested limited shaft friction not less than 180 [kN/m2] 

meeting undrained shear strength of 200 [kN/m2]. To carry out the analysis by the LPR method, 

a limit shaft friction of ql = 180 [kN/m2], which gives a limiting pile load of Ql = 3817 [kN] is 

assumed. Groundwater in typical London clay lies within 1.0 [m] from the ground surface 

(Rickard et al. (1985)). The groundwater level is assumed to lie directly below the raft. Dry unit 

weight of the clay is taken to be γs = 18.5 [kN/m3]. 
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4.3.2.2 Pile material 

 

To take the weight of the piles in the analysis, the unit weight of the pile material is taken to be 

γb = 25 [kN/m3]. 

 

4.3.2.3 Analysis of the piled raft 

 

As piles are narrow to each other, pile-raft interaction may be neglected and the foundation is 

analyzed as freestanding raft. Comparisons are carried out to evaluate the present analysis. 

Settlements computed from methods that use variable soil modulus and field measurements are 

compared with that obtained by the present analysis. Piles are subdivided into line elements, 

each of 3.75 [m] length. The effective depth of the soil layers under the raft is taken to be H = 

100 [m] for all methods. In the analysis by NPRD, NPRH and LPR methods, the total layer is 

subdivided into 10 sub-layers to take the variety of the soil modulus with depth. In the present 

analysis, the average vertical stress increase is determined in sub-layers of the clay, each of 20 

[m] thickness. 

 

4.3.2.4 Comparison with measured settlement 

 

To examine the present analysis for Stonebridge Tower piled raft, the computed consolidation 

settlement is compared with the measured settlement in Table 4-1. The computed settlement was 

determined at the raft centroid. The table shows a small difference between computed and 

measured settlements. 

 

 

Table 4-1 Comparison between measured and computed settlements 

Item Measured settlement Computed settlement Difference 

Consolidation settlement Sc [cm] 1.8 2.1 + 0.3  

4.3.2.5 Comparison with methods using variable soil modulus 

 

Figure 4-14 shows the consolidation settlement of piled raft obtained by the present analysis and 

those obtained by methods using variable soil modulus. Also, the figure includes the measured 

settlement. 

 

LPR gives the smallest settlements among the others. This was expected, because the settlement 

from nonlinear analysis is greater than that obtained from linear analysis. However, the contact 

pressures for the present analysis and LPR are the same where they are independent from soil 

properties but settlements of them are not the same. It can be noticed that the consolidation 

settlement of the present analysis has a good agreement not only with measured settlement but 

also with computed settlement of nonlinear analyses using variable soil modulus. 
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Figure 4-14 Comparison between measured and computed settlements (case study 1) 

 

 

4.3.3 Case study 2: Piled raft of Dashwood House 

 

Hong et al. (1999) applied a method for the analysis of large vertically loaded pile groups using 

load-transfer curves (NPRLT) on the piled raft of Dashwood House. They compared the 

computed settlement with that of the field measurement reported by Hooper (1979). In this case 

study, the computed and measured settlement of this piled raft is used to verify the present 

analysis. 

 

Dashwood House is a high building of 15-storey floors with a single storey basement located in 

North London, England. The building is 61 [m] high. The foundation of Dashwood House is a 

rectangular piled raft of area 43 [m] by 31.5 [m]. The building load including the raft weight is 

274 [MN]. A total of 462 bored piles are located under the raft. All piles have a length of l = 15 

[m] and a diameter of D = 0.485 [m]. Piles are arranged on a square grid of 1.5 [m] interval. 

Figure 4-15 shows the mesh of the raft with piles. The subsoil at the building location consists of 

8 [m] of fill, sand and gravel, followed by London clay. The raft is founded on gravel about 1 

[m] above the upper clay surface. In their analysis for simplicity, Hong et al. (1999) considered 

the raft resets on the London clay directly. 

 

4.3.3.1 Analysis of the piled raft 

 

Dashwood House has the same conditions of Stonebridge Tower in respect to the soil, statical 

system of the structure and piled raft. Considering the same properties of London clay presented 

in case study 1, the piled raft is analyzed by the present analysis and the selected previously 

methods. Piles are divided into line elements each of 3.25 [m] length. 
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33.0 [m]

 
 

Figure 4-15 Mesh of Dashwood House raft with piles 

 

 

4.3.3.2 Comparison with measured settlement  

 

The consolidation settlement is compared with the measured settlement in Table 4-2. The table 

shows a small difference between computed and measured settlements. 

 

 

Table 4-2 Comparison between measured and computed settlements 

Item Measured settlement Computed settlement Difference 

Consolidation settlement Sc [cm] 3.3 2.9 - 0.4  

4.3.3.3 Comparison with methods using variable soil modulus 

 

Figure 4-16 shows the consolidation settlement of piled raft obtained by the present analysis and 

those obtained by methods using variable soil modulus. Also, the figure includes the measured 

settlement and the computed settlement by the NPRLT method. From this figure, the same 

conclusions, which are presented in case study 1, are achieved. 
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Figure 4-16 Comparison between measured and computed settlements (case study 2) 
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5 Case study 5: Westend 1 piled raft 

5.1 General 

Westend 1 is 208 [m] high skyscraper and standing on a piled raft. The tower lies in Frankfurt 

city, Germany. It was completed in 1993. The tower was the third tallest skyscraper in Frankfurt 

and also in Germany until 1993, ‎Figure 5-1.  

 

Using instruments installed inside the foundation of Westend 1, an extensive measuring program 

was established to monitor the behavior of the building. Because these instruments record raft 

settlements, raft contact pressures and loads on pile heads and along pile shafts, the building was 

a good opportunity to verify analysis methods for piled raft foundation and compare them with 

the recorded data Extensive studies were carried out by Poulos et al. (1997) Poulos (2001), Reul 

and Randolph (2003) and Chaudhary (2010) on analyzing the piled raft by methods of Poulos 

and Davis (1980), Poulos (1991), Poulos (1994), Ta and Small (1996), Sinha (1996), Franke et 

al. (1994), Randolph (1983) and Clancy and Randolph (1993).  

 

The building has a basement with three underground floors and 51 stories with an average 

estimated applied pressure of 412 [kN/m
2
]. The foundation area is about 2900 [m

2
] founded on 

Frankfurt clay at a depth of 14·5 [m] under the ground surface. Raft thickness varies from 4·65 

[m] at the middle to 3 [m] at the edge. A total of 40 bored piles, 30 [m] length by 1.3 [m] 

diameter. Piles are arranged in 2 rings under the heavy columns of the superstructure. The 

subsoil consists of gravels and sands up to 8 [m] below the ground surface underlay by layers of 

Frankfurt clay extended to more than 100 [m] below the ground surface. The groundwater level 

lies at 4.75 [m] under the ground surface. 
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Figure 5-1 Westend 1 

1
 

                                                 
1 https://en.wikipedia.org/wiki/Westendstrasse_1 
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‎Figure 5-2 shows a layout of Westend 1 with the piled raft according to Reul and Randolph 

(2003).  

 

 

 

  
 

Figure 5-2 Layout of Westend 1 with piled raft after Reul and Randolph (2003) 

 

5.2 Analysis of the piled raft 

Using the available data and results of the Westend 1 piled raft the nonlinear analyses of piled 

raft in ELPLA are evaluated and verified using the following load-settlement relations of piles, 

El Gendy et al. (2006) and El Gendy (2007): 

 

1- Hyperbolic function. 

2- German standard DIN 4014. 

3- German recommendations EA-Piles (lower values). 

4- German recommendations EA-Piles (upper values). 

 

The foundation system is analyzed as rigid or elastic piled rafts. In which, the raft is considered 

as either rigid or elastic plate supported on equally rigid piles. 

 

A series of comparisons are carried out to evaluate the nonlinear analyses of piled raft for load-

settlement relations of piles. Results of other analytical solutions and measurements are 

compared with those obtained by ELPLA. 

5.3 FE-Net 

The raft is divided into triangular elements with a maximum length of 2.0 [m] as shown in 

‎Figure 5-3. Similarly, piles are divided into elements with 2.0 [m] length. 
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5.4 Loads 

The uplift pressure on the raft due to groundwater is Pw = 81 [kN/m
2
]. Consequently, the total 

effective applied load on the raft including own weight of the raft and piles is N = 950 [MN]. 

The load is defined by a uniform load of 412 [kN/m
2
] on the entire raft. 

 
A = 64.40 [m]

B
 =

 4
7

.3
0

 [m
]

 
Figure 5-3 Mesh of Westend 1 piled raft with piles of element length = 2.0 [m] 

5.5 Pile and raft material 

The average raft thickness is 4.2 [m]. All piles are 30 [m] length and 1.3 [m] diameter. The 

following values are used for pile and raft material: 

 

For the raft: 

Modulus of elasticity  Ep =  34 000  [MN/m
2
] 

Poisson's ratio vp = 0.25  [-] 

Unit weight   γb = 0.0   [kN/m
3
] 

 

 

For piles: 

Modulus of elasticity  Ep =  22 000  [MN/m
2
] 

Unit weight   γb = 0.0   [kN/m
3
] 
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5.6 Soil properties 

The average clay properties used in the analysis can be described as follows: 

 

Modulus of compressibility 

Based on the back analysis presented by Amann et al. (1975), the distribution of modulus of 

compressibility for loading of Frankfurt clay with depth is defined by the following empirical 

formula:  

 z  E = E sos 0.35 + 1                                                          (3.1) 

while that for reloading is: 

 mMN/ 70 2  = W s                                                          (3.2) 

where: 

Es  Modulus of compressibility for loading [MN/m
2
] 

Eso  Initial modulus of compressibility, Eso = 7 [MN/m
2
] 

z Depth measured from the clay surface, [m] 

Ws  Modulus of compressibility for reloading [MN/m
2
] 

 

Undrained cohesion cu 

The undrained cohesion cu of Frankfurt clay increases with depth from cu = 100 [kN/m
2
] to cu = 

400 [kN/m
2
] at 70 [m] depth under the clay surface according to Sommer/ Katzenbach (1990). 

To carry out the analyses using German standards and recommendations, an average undrained 

cohesion of cu = 200 [kN/m
2
] is considered. 

 

Limit pile load Ql 

Russo (1998) suggested a shaft friction of 180 [kN/m
2
] for undrained shear strength of 200 

[kN/m
2
]. To carry out the analysis using a hyperbolic function, a shaft friction of τ = 180 

[kN/m
2
] is assumed, which results in pile shaft capacity of Ql = 22 [MN] as shown in equation 

2.3  

 

[MN] 22 [kN] 2054230*1.3*π*801**π*τ  lD Ql                      (2.3) 

 

where: 

Ql  Limit pile load, [MN] 

τ  Limit shaft friction, τ = 180 [kN/m
2
] 

D Pile diameter, [m] 

l  Pile length, [m] 

 

Poisson’s ratio 

Poisson’s ratio of gravels and sands is taken to be νs = 0.25 [-]. 

 

The boring log for the subsoil under the raft consists of 12 soil layers as shown ‎Figure 5-4. The 

total depth under the ground surface is 108 [m]. 

 

‎Figure 5-5 to ‎Figure 5-8 show the load settlement relations for the different analyses. 
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Figure 5-4 Boring log 
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Figure 5-5 Load-settlement (hyperbolic function) 
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Figure 5-6 Load-settlement (DIN 4014) 
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Figure 5-7 Load-settlement (EA-Piles, lower values) 
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Figure 5-8 Load-settlement (EA-Piles, upper values) 
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5.7 Results 

For a sample of the results for the different analyses by ELPLA, Figure 5-9 and Figure 5-10 

show the settlement for both rigid and elastic piled rafts using German recommendations EA-

Piles for upper and lower values, while Figure 5-11 and Figure 5-12 show the pile load for both 

rigid and elastic piled rafts using the hyperbolic function.  

 

5.8 Measurements and other results  

The construction of Westend 1 started in 1990 and finished in 1993. According to Lutz et al. 

(1996), the recorded settlement at the center of the raft 2·5 years after completion of the shell of 

the building is 12 [cm]. The bearing factor from the measured pile loads is αkpp= 0.49. The 

measured minimum and maximum pile loads of 9·2 [MN] and 14·9 [MN] respectively are 

according to Franke and Lutz (1994). 

 

‎Figure 5-13 compares the settlement, bearing factor of piled raft and min and max pile load 

values calculated by ELPLA with those of measurements. For more comparison, ‎Figure 5-14 

shows the rest of the results for the different methods presented by Reul and Randolph (2003). 

999 

 

5.9 Evaluation 

This case study shows that ELPLA is a practical tool for analyzing large piled raft problems in 

significantly lowered computational time. 
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Figure 5-9 Settlement for rigid piled raft using German recommendations EA-Piles for lower 

  values 

  

 

 

11.11 [cm]

11.22 [cm]

11.33 [cm]

11.44 [cm]

11.55 [cm]

11.66 [cm]

11.77 [cm]

11.88 [cm]

11.99 [cm]

12.10 [cm]

12.21 [cm]

12.32 [cm]

12.43 [cm]

 
 

Figure 5-10 Settlement for elastic piled raft using German recommendations EA-Piles for  

  lower values 
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Figure 5-11 Pile load [MN] for rigid piled raft using hyperbolic function 
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Figure 5-12 Pile load [MN] for elastic piled raft using hyperbolic function 
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Figure 5-13 Results obtained from measurements and ELPLA 
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Figure 5-14 Comparison of different methods and measurements (Reul and Randolph (2003)) 
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6 Case study: Skyper piled raft foundation 

6.1 General 

Skyper is 154 [m] high-rise building supported on a piled raft foundation. The tower was one of 

the tallest three skyscrapers in Frankfurt, Germany when it was completed in 2004, ‎Figure 6-1. 

 

The tower has a basement with three underground floors and 38 stories with an average 

estimated applied load of 426 [kN/m
2
]. The raft of the Skyper tower has a uniform thickness of 

3.5 [m] supported by 46 bored piles with a diameter 1.5 [m]. Piles are arranged under the core 

structure in 2 rings; external ring has 20 piles, 31 [m] long while the internal ring has 26 piles, 

35 [m] in length. The raft has an irregular plan shape with an area of 1900 [m
2
]. The raft founded 

on a typical Frankfurt clay at a depth 13.4 [m] below ground surface. The subsoil at the location 

of the building consists of gravels and sands up to 7.4 [m] below ground surface underlay by 

layers of Frankfurt clay extending to a depth of 56.4 [m] below ground surface followed by 

incompressible Frankfurt Limestone layer. The groundwater level is 5 [m] below ground surface.  

 

Extensive studies using different calculation methods were carried out by Saglam (2003), El-

Mossallamy et al. (2009), Sales et al. (2010), Richter and Lutz (2010), Vrettos, C. (2012), Bohn 

(2015) to evaluate the Skyper piled raft foundation design 
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Figure 6-1 Skyper 

1
 

                                                 
1 https://en.phorio.com/file/703520609/ 
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‎Figure 6-2 shows a layout of the Skyper piled raft foundation.  

 

 

 
A = 47.75 [m]

B
 =

 4
7
.0

2
 [m

]

 
 

 

 

 

 

 

 

Figure 6-2 Layout of the Skyper piled raft foundation 

 

6.2 Analysis of the piled raft 

Using the available data and results of the Skyper piled raft,  the nonlinear analyses of piled raft 

in ELPLA are evaluated and verified using the following load-settlement relations of piles, El 

Gendy et al. (2006) and El Gendy (2007): 

 

1- Hyperbolic function. 

2- German standard DIN 4014. 

3- German recommendations EA-Piles (lower values). 

4- German recommendations EA-Piles (upper values). 

 

The foundation system is analyzed as rigid or elastic piled rafts. In which, the raft is considered 

as either rigid or elastic plate supported on rigid piles. 

 

A series of comparisons are carried out to evaluate the nonlinear analyses of piled raft for load-

settlement relations of piles. In which, results of other analytical solutions and measurements are 

compared with those obtained by ELPLA.  

L=35[m] 

L=31[m] 

5.00 
7.40 

0.00 

13.4 

Frankfurt clay 

44.4 

Frankfurt limestone 

48.4 

56.4 
Elevation [m] 

Sand with gravel  
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6.3 FE-Net 

The raft is divided into triangular elements with maximum length of 2.0 [m] as shown in ‎Figure 

6-3. Similarly, piles are divided into elements with 2.0 [m] length. 

6.4 Loads 

The uplift pressure on the raft due to groundwater is Pw = 160 [kN/m
2
]. Consequently, the total 

effective applied load on the raft including own weight of the raft and piles is N = 810 [MN]. 

 
A = 47.75 [m]

B
 =

 4
7

.0
2

 [m
]

 
Figure 6-3 Mesh of Skyper piled raft with piles 

 

 

G2 (L=35[m], D=1.5[m]) 

G1 (L=31[m], D=1.5[m]) 
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6.5 Pile and raft material 

The raft thickness is 3.5 [m]. The piles are 1.5 [m] in diameter and 31 [m] and 35 [m] in length.  

The following values were used for pile and raft material: 

 

For the raft: 

Modulus of elasticity  Ep =  34 000  [MN/m
2
] 

Poisson's ratio vp = 0.25  [-] 

Unit weight   γb = 0.0   [kN/m
3
] 

 

 

For piles: 

Modulus of elasticity  Ep =  22 000  [MN/m
2
] 

Unit weight   γb = 0.0   [kN/m
3
] 

6.6 Soil properties 

The clay properties used in analysis can be described as follows: 

 

Modulus of compressibility 

Based on the back analysis presented by Amann et al. (1975), the distribution of modulus of 

compressibility for loading of Frankfurt clay with depth is defined by the following empirical 

formula:  

 z  E = E sos 0.35 + 1                                                          (3.1) 

 

while that for reloading is: 

 mMN/ 70 2  = W s                                                          (3.2) 

 

where: 

Es  Modulus of compressibility for loading [MN/m
2
] 

Eso  Initial modulus of compressibility, Eso = 7 [MN/m
2
] 

z Depth measured from the clay surface, [m] 

Ws  Modulus of compressibility for reloading [MN/m
2
] 

 

Undrained cohesion cu 

The undrained cohesion cu of Frankfurt clay increases with depth from cu = 100 [kN/m
2
] to cu = 

400 [kN/m
2
] in 70 [m] depth under the clay surface according to Sommer/ Katzenbach (1990). 

To carry out the analyses using German standard and recommendations, an average undrained 

cohesion of cu = 200 [kN/m
2
] is considered. 

 

Limit pile load Ql 

Russo (1998) suggested a limiting shaft friction not less than 180 [kN/m
2
] meeting undrained 

shear strength of 200 [kN/m
2
]. To carry out the analysis using a hyperbolic function, a limit shaft 

friction of τ = 180 [kN/m
2
] is assumed. The limit pile load for pile group 1 is calculated from:  

 

[MN] 26 [kN] 2629531*1.5*π*801**π*τ1  lD Ql                      (2.3) 

while that for pile group 2 from: 

 

[MN] 30 [kN] 2968835*1.5*π*801**π*τ2  lD Ql                      (2.4) 
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where: 

Ql  Limit pile load, [MN] 

τ  Limit shaft friction, τ = 180 [kN/m
2
] 

D Pile diameter, [m] 

l  Pile length, [m] 

 

Poisson’s ratio 

Poisson’s ratio of gravels and sands is taken to be νs = 0.25 [-]. 

 

To carry out the analysis, the subsoil under the raft is considered as indicated in the boring log of 

‎Figure 6-4 that consists of 7 soil layers. The total depth under the ground surface is taken to be 

56.4 [m]. 
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BP1

G+S

5.00

E‎=‎75000[kN/m²],FHI‎=‎30[°]

W‎=‎225000[kN/m²],C‎=‎0[kN/m ²]

GAM‎=‎18[kN/m³],Nue‎=‎0.25[-]

G+S
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T
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T
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GW 5.00
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4.00

8.00
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Figure 6-4 Boring log 
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S, Sand 
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6.7 Results 

As examples for results of different analyses by ELPLA, Figure 6-5 and Figure 6-6 show the 

settlement, while Figure 6-7 and Figure 6-8 show the pile load for both rigid and elastic piled 

rafts using German recommendations EA-Piles for upper values.  

6.8 Measurements and other results  

The construction of Skyper started in 2003 and finished in the first half of 2004. According to 

Richter and Lutz (2010), all calculations resulted in a predicted settlement of 5 up to 7.5 [cm] for 

the tower, while according to El-Mossallamy et al. (2009) the bearing factor of piled raft αkpp 

was computed in a range of 60% to 85%. The observed settlement was 5.5 [cm] directly after the 

completion of the shell only. After Lutz et al. (2006) with αkpp ≈0.6, the average max. pile forces 

ranges between 12 to 14 [MN], while min. pile forces ranges between 10 to 11[MN]. 

 

‎Figure 6-9 compares results of settlement, bearing factor of piled raft and min and max pile 

loads obtained by ELPLA with the predicted results from the other methods. For more 

comparison, ‎Table 6-1 shows the other results for another different methods presented by 

Richter and Lutz  (2010). Based on settlement measurements 4 years after construction, the 

maximum settlement under the foundation is about 5 to 5.5 [cm]. Using the three-dimensional 

finite element method, a settlement of 6.3 [cm] was calculated according to Richter and Lutz 

(2010). 

 

6.9 Evaluation 

It can be concluded from ‎Figure 6-9 that results obtained from different analyses available in 

ELPLA can present rapid and acceptable estimation for settlement, bearing factor of the piled 

raft and pile loads. This case study shows also that analyses available in ELPLA are practical for 

analyzing large piled raft problems. Because of they are taking less computational time 

compared with other complicated models using three dimension finite element analyses.  
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Figure 6-5 Settlement for rigid piled raft using German recommendations EA-Piles for upper 

  values 

3.61 [cm ]

4.03 [cm ]

4.45 [cm ]

4.87 [cm ]

5.29 [cm ]

5.71 [cm ]

6.13 [cm ]

6.55 [cm ]

6.97 [cm ]

7.39 [cm ]

7.81 [cm ]

8.23 [cm ]

8.65 [cm ]

 
 

Figure 6-6 Settlement for elastic piled raft using German recommendations EA-Piles for  

  upper values 
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Figure 6-7 Pile load [MN] for rigid piled raft using German recommendations EA-Piles for  

  upper values 
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Figure 6-8 Pile load [MN] for elastic piled raft German recommendations EA-Piles for  

  upper values 
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Figure 6-9 Results obtained from measurements and ELPLA 
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Table 6-1 Overview of calculation results of other models after Richter and Lutz (2010) 

Method BEM FEM Elast. half space Measured 

Average settlement  Skpp [cm] 4.8 6.3 5.0-7.3 (9.5)  

Max. settlement  Smax [cm] 6.0 7.5 - 5.5
*
 

Bearing factor  αkpp [%] 71 82 59-79  

Modulus of subgrade ks [MN/m
3
] about 2.0 1.6-2.8  

Average pile load  Qp [MN] 12.5 14.3 10.3-13.9  

Min. pile load Qp,min [MN] 9.9 11.6 8.5-10.1  

Max. pile load Qp,max [MN] 16.1 17.6 13.8-20.5  

Average pile stiffness  kp [MN/m] 261 301 125-280  

* Directly after the completion of the shell only 
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7 Case study 7: Burj Khalifa piled raft 

7.1 General 

Burj Khalifa is a 163-storey skyscraper in Dubai, United Arab Emirates. The total height of the 

building is 829.8 [m], with a podium development at its base, including a 4 to 6-story garage.  

With a total height of 829.8 [m] and a roof height (excluding antenna) of 828 [m], Burj Khalifa 

has been the tallest structure and building in the world since its topping out in late 2008, ‎Figure 

7-1. 

 

The Burj Khalifa is located on a 42 000 [m
2
] site. The tower is founded on a 3.7 [m] thick raft 

supported on 192 bored piles, 1.5 [m] in diameter, extending 47.45 [m] below the base of the 

raft; podium structures are founded on a 0.65 [m] thick raft (increased to 1 [m] at column 

locations) supported on 750 bored piles, 0.9 [m] in diameter, extending 30–35 [m] below the 

base of the raft. The tower raft consists of three wings each is 50 [m] long and 25 [m] wide 

forming an area of 3305 [m
2
]. ‎Figure 7-2 shows an isometric view of Burj Khalifa Tower 

foundation system and a plan for pile locations. 

 

 

Extensive studies using different calculation methods were carried out by Poulos and Bunce 

(2008), Badelow & Poulos (2016) and Russo etc. al. (2013).  
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Figure 7-1 Burj Khalifa 

1
 

                                                 
1 https:// tadalafilforsale.net/group/burj-khalifa-images/#photo_27 
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Figure 7-2 Burj Khalifa Tower Foundation system 

 

7.2 Analysis of the piled raft 

Using the available data and results of the Burj Khalifa piled raft, which have been discussed in 

detail in the previous references, the nonlinear analyses of piled raft in ELPLA are evaluated and 

verified using the following load-settlement relations of piles, El Gendy et al. (2006) and El 

Gendy (2007): 

 

 

1- Hyperbolic Function for Load-Settlement Curve. 

2- Given Load-Settlement Curve. 

 

The foundation system is analyzed as an elastic piled raft in which the raft is considered as an 

elastic plate supported on equal rigid piles. 

 

A series of comparisons are carried out to evaluate the nonlinear analyses of piled raft for load-

settlement relations of piles. In which, results of other analytical solutions and measurements are 

compared with those obtained by ELPLA. 

7.3 FE-Net 

The raft is divided into triangular elements with a maximum length of 2.0 [m] as shown in 

‎Figure 7-3. Piles are divided into five elements with 9.49 [m] length. 

7.4 Loads 

Only long-term conditions have been considered, and for most of the early analyses, an average 

load per pile of 23.21 [MN] has been used (this is a representative of the design dead and live 

loads) and has been applied as an uniformly distributed load on the tower raft of about 1250 

[kPa]. 
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A = 92.16 [m]

B
 =

 8
1

.1
5

 [m
]

 
Figure 7-3 Mesh of Burj Khalifa piled raft with piles of element length = 2.0 [m] 

7.5 Pile and raft material 

The raft is 3.7 [m] thick and was poured utilizing C50 (cube strength) self-consolidating 

concrete. The Tower raft is supported by 192 bored cast-in-place piles. The C60 self-

consolidating concrete piles are 1.5 [m] in diameter and 47.45 [m] long.  

The following values were used as pile and raft material: 

 

For the raft: 

Modulus of elasticity  Ep =  33234  [MN/m
2
] 

Poisson's ratio vp = 0.167  [-] 

Unit weight   γb = 23.60   [kN/m
3
] 

 

For piles: 

Modulus of elasticity  Ep =  36406  [MN/m
2
] 

Unit weight   γb = 23.60   [kN/m
3
] 
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7.6 Soil properties 

The ground conditions comprise a horizontally stratified subsurface profile which is complex 

and highly variable, due to the nature of deposition and the prevalent hot arid climatic 

conditions. Medium dense to very loose granular silty sands (Marine Deposits) are underlain by 

successions of very weak to weak sandstone interbedded with very weakly cemented sand, 

gypsiferous fine grained sandstone/siltstone and weak to moderately weak 

conglomerate/calcisiltite. 

 

Groundwater levels are generally high across the site and excavations were likely to encounter 

groundwater at approximately 2.5 [m] below ground level. 

 

The drilling was carried out using cable percussion techniques with follow-on rotary drilling 

methods to depths between 30 [m] and 140 [m] below ground level. 

 

The ground profile and derived geotechnical design parameters assessed from the investigation 

data are summarized in ‎Table 7-1. 
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Table 7-1 Summary of Geotechnical Profile and Parameters 

Strata 
Sub-

Strata 
Subsurface Material 

Level at 

top 

of stratum 

 

 

[m DMD] 

Thickness 

 

 

 

H 

[m] 

UCS 

 

 

 

qs 

[MPa] 

Undrained 

Modulus 

 

 

Eu  

[MPa] 

Ult. 

Comp. 

Shaft 

Frict. 

fs 

[kPa] 

1 

1a 
Medium dense silty 

Sand 
+2.50 1.50 - 34.5 - 

1b 
Loose to very loose 

silty Sand 
+1.00 2.20 - 11.5 - 

2 2 

Very weak to 

moderately weak 

Calcarenite 

-1.20 6.10 2.0 500 350 

3 

3a 

Medium dense to 

very dense Sand/ 

Silt 

with frequent 

sandstone bands 

-7.30 6.20 - 50 250 

3b 

Very weak to weak 

Calcareous 

Sandstone 

-13.50 7.50 1.0 250 250 

3c 

Very weak to weak 

Calcareous 

Sandstone 

-21.00 3.00 1.0 140 250 

4 4 

Very weak to weak 

gypsiferous 

Sandstone/ 

calcareous 

Sandstone 

-24.00 4.50 2.0 140 250 

5 

5a 

Very weak to 

moderately weak 

Calcisiltite/ 

Conglomeritic 

Calcisiltite 

-28.50 21.50 1.30 310 285 

5b 

Very weak to 

moderately weak 

Calcisiltite/ 

Conglomeritic 

Calcisiltite 

-50.00 18.50 1.70 405 325 

6 6 

Very weak to weak 

Calcareous/ 

Conglomerate strata 

-68.50 22.50 2.50 560 400 

7 7 

Weak to moderately 

weak Claystone/ 

Siltstone  

-91.00 >46.79 1.70 405 325 
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To carry out the analysis, the subsoil under the raft is considered as indicated in the boring log of 

‎Figure 7-4 that consists of 12 soil layers. The total depth under the ground surface is taken to be 

140 [m]. 

 

 
BPN1

S

1.50

E = 34.5[MN/m2]

W = 103.5[MN/m2]

GAM = 0.018[MN/m3]

S

2.50

E = 11.5[MN/m2]

W = 34.5[MN/m2]

GAM = 0.018[MN/m3]

S

3.70

E = 11.5[MN/m2]

W = 34.5[MN/m2]
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Figure 7-4 Boring log 
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‎Figure 7-5 to ‎Figure 7-6 show load-settlement relations for the different analyses. 
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Figure 7-5 Load-settlement relation from pile load test 
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Figure 7-6 Load-settlement relation according to a hyperbolic function 
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7.7 Results 

As examples for results of different analyses by ELPLA, ‎Figure 7-8 and ‎Figure 7-7 show the 

settlement for elastic piled raft of Burj Khalifa using methods: "Hyperbolic Function for Load-

Settlement Curve" and "Given Load-Settlement Curve from pile-load test", respectively. 

Besides, ‎Figure 7-9, ‎Figure 7-10 and ‎Figure 7-11 show self-settlement Sv, interaction settlement 

Srv and total settlement Sr of piles using the method "Given Load-Settlement Curve from pile-

load test". 

  

 

 
Figure 7-7 Settlement using the method "Hyperbolic Function for Load-Settlement Curve" 
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Figure 7-8 Settlement using the method "Given Load-Settlement Curve" 
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Figure 7-9 Self settlement of piles Sv [mm] using the method "Given Load-Settlement Curve" 
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Figure 7-10 Interaction settlement of piles Srv [mm] using the method "Given Load-Settlement 

Curve" 
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Figure 7-11 Total settlement of piles Sr [mm] using the method "Given Load-Settlement Curve" 

 

7.8 Measurements and other results  

7.8.1 Measured settlement 

The construction of Burj Khalifa began on 6 January 2004, with the exterior of the structure 

completed on 1 October 2009. According to Badelow & Poulos (2016) the settlement of the 

tower raft was monitored from completion of concreting till 18 February 2008. The recorded 

maximum settlement at 18 February 2008 was 43 [mm] under nearly 80 % of the building load. 

 

A comparison is presented between the measured settlement on 18 February 2008 under 80% of 

the total load and that computed by ELPLA using Method: "Given Load-Settlement Curve". 

‎Figure 7-12 shows a comparison between measured settlement (Feb. 2008) and computed 

settlement under 80 % of the total load at a cross section of the Wing c, while ‎0 shows a 

comparison between extreme values of measured settlement and that calculated for the same 

case. 
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Figure 7-12 Measured settlement (Feb. 2008) and computed settlement under 80 % of total load 

 

 

Table 7-2 Comparison between measured settlement at February 2008 and that calculated  

  by ELPLA under 80 % of the total load 

Method 
Smax. 

[mm] 

Smin. 

[mm] 

SDiff. 

[mm] 

Measured (18 February 2008) 43 29 14 

ELPLA – Method: "Given Load-Settlement Curve" 48 24 24 

 

‎Figure 7-13 shows contours of measured settlement [mm] at February 2008 and that calculated 

by ELPLA under 80 % of the total load using method "Given Load-Settlement Curve" 
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Figure 7-13 Contours of measured settlement [mm] at February 2008 and that calculated by 

ELPLA under 80 % of the total load using method "Given Load-Settlement Curve"  

 

The above comparison of the piled raft under 80 % of the total load illustrates that the maximum 

and minimum results of ELPLA are in good agreement with the measured settlement with 

difference not exceed 1 [cm]. The measured differential settlement is considerably smaller than 

that computed because the building stiffness is not considered in ELPLA analysis in this case, 

which would reduce the differential settlement. 

7.8.2 Calculated final settlement 

Several analyses were used to assess the response of the foundation for the Burj Khalifa Tower 

and Podium. The main design model was developed using a Finite Element (FE) program 

ABAQUS run by a specialist company KW Ltd, based in the UK. Other models were developed 

to validate and correlate the results from the ABAQUS model using other software programs. 

The design values of settlement were presented by Poulos and Bunce (2008). 

 

Russo etc. al. (2013) deals with the re-assessment of foundation settlements for the Burj Khalifa 

Tower in Dubai. Re-assessment was carried out using the computer program Non-linear 

Analysis of Piled Rafts NAPRA with neglecting the structure stiffness effect on raft settlement. 

 

A comparison is presented between the computed settlement in other references and the 

computed settlement by ELPLA using different Nonlinear analysis methods. The comparison is 

presented as a cross section at Wing c and tables as in ‎Figure 7-14 and ‎Table 7-3, respectively. 

 

The comparison shows that the results of two methods in ELPLA are in good agreement with the 

calculated results of Russo etc. al. (2013). The second method (Load-Settlement relation as a 

Hyperbolic Function for Load-Settlement Curve) results are closer to the design results 

presented by Poulos and Bunce (2008). 
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Figure 7-14 Final settlement for elastic piled raft using different analysis models 

 

 

 

Table 7-3 Comparison between various calculated settlement profiles 

Method 
Smax.  

[mm] 

Smin. 

[mm] 

SDiff. 

[mm] 

Design Values (Poulos and Bunce 2008) 78 60 18 

Russo etc. al. (2013) 58 24 34 

ELPLA – Given Load-Settlement Curve 58 29 29 

ELPLA – Hyperbolic Function for Load-Settlement Curve 79 47 32 
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7.8.3 Calculated final pile loads 

 

The maximum and minimum pile loads were obtained from the three-dimensional finite element 

analysis for all loading combinations by Poulos and Bunce (2008). The maximum loads were at 

the corners of the three “wings” and were of the order of 35 [MN], while the minimum loads 

were within the center of the group and were of the order of 12-13 [MN]. 

 

‎Figure 7-15 and ‎Figure 7-16 show pile loads obtained by ELPLA using method: "Hyperbolic 

Function for Load-Settlement Curve" and method "Given Load-Settlement Curve from pile-load 

test", while ‎Table 7-4 compares results of max and min pile loads obtained by ELPLA with those 

of Poulos and Bunce (2008). 
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Figure 7-15 Pile load [MN] using the method "Hyperbolic Function for Load-Settlement Curve" 
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Figure 7-16 Pile load [MN] using the method "Given Load-Settlement Curve" 

 

 

Table 7-4 Comparison between various calculated pile loads 

Method 
Pmax.  

[MN] 

Pmin. 

[MN] 

FEA (Poulos and Bunce 2008) 35 12-13 

ELPLA – Given Load-Settlement Curve 38 11 

ELPLA – Hyperbolic Function for Load-Settlement Curve 21 13 
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7.9 Conclusion 

This case study shows that ELPLA is a practical tool for analyzing large piled raft problems in 

significantly lowered computational time. 
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8 Case study 8: Shanghai Tower piled raft 

8.1 General 

The Shanghai Tower is a mega tall skyscraper in Lujiazui, Pudong, Shanghai, ‎Figure 8-1. It is 

considered the second-tallest building in the world after Burj Khalifa. The height of the tower is 

632 meters. It consists of a 124-storey tower, a 7-storey podium and a 5-storey basement.  

 

The tower has a 5-storey basement, and its foundation depth is 31.4 [m]. The thickness of the 

raft under the tower is 6 [m] and the area of the raft is 8945 [m
2
]. The raft of Shanghai tower is 

supported by 955 bored piles with a diameter 1.0 [m]. The spacing between the piles is 3 [m] and 

the piles are distributed in different foundation arrangements where the entire raft area is divided 

into four sub areas A, B, C and D as shown in ‎Figure 8-2. The length of the pile in area A is 56 

[m], while the length of the pile in other zones is 52 [m]. 

 

 

Extensive studies with different calculation methods were carried out by Sun etc. al. (2011), 

Xiao etc. Al. (2011), Tang and Zhao (2014), (2014), Su etc. al. (2013), (2014) and Zhao, X. and 

Liu, S. (2017).  
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Figure 8-1 Shanghai Tower 

1
 

                                                 
1 https://upload.wikimedia.org/wikipedia/commons/3/32/Shanghai_Tower_2015.jpg 
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Figure 8-2 Shanghai Tower Foundation system and vertical zoning of the Tower 

  (Zhao, X. and Liu, S. (2017)) 

 

 

8.2 Analysis of the piled raft 

Using the available data and results of the Shanghai piled raft, which have been discussed in 

detail in the references, the nonlinear analysis of piled raft in ELPLA according to El Gendy et 

al. (2006) and El Gendy (2007) is evaluated and verified using the load-settlement relation of 

piles from the pile load test given by Xiao etc. Al. (2011). 

 

For simplicity, the piled raft is considered double symmetric and only a quarter of the foundation 

system is analyzed. The foundation system is analyzed as an elastic raft supported on unequal 

rigid piles. 

 

8.3 FE-Net 

The raft is divided into triangular elements with a maximum length of 1.5 [m] as shown in 

‎Figure 8-3. Piles are divided into five elements with 14 [m] length. 
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Figure 8-3 FE-mesh of Shanghai tower piled raft with piles  

 

8.4 Loads 

According to Tang and Zhao (2014), the tower foundation carries a total dead and live loads of 

6710 [MN] and 963 [MN], respectively. The total vertical load used in calculating the settlement 

is 7672 [MN]. The column and wall sections and loads are listed in ‎Table 8-1The system of 

loading acting on the piled raft is shown in ‎Figure 8-4. 

  

Table 8-1 Section and load of columns and walls 

 Section 
Average load  

[MN] 

Distributed load 

[MPa] 

Horizontal super 

columns 
5.3×3.7[m] 4×450.16 22.96 

Vertical super columns 3.7×5.3[m] 4×461.75 23.55 

Diagonal columns 5.5×2.4[m] 4×231.22 17.52 

Core walls 
tflange = 1.2[m], 

tweb  = 0.9[m] 
3099.87 16.50 
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Total load  7672.387  
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Figure 8-4 System of loading acting on the piled raft 

 

8.5 Pile and raft material 

The concrete grade of the raft and piles is C50. The following values were used as pile and raft 

material: 

 

Modulus of elasticity  Ep =  33234  [MN/m
2
] 

Poisson's ratio vp = 0.167  [-] 

Unit weight   γb = 23.60   [kN/m
3
] 
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8.6 Load settlement curve 

‎Figure 8-5 shows the load-settlement relation resulted from the pile load test given by Xiao etc. 

Al. (2011). 
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Figure 8-5 Load-settlement relation from pile load test 

 

 

8.7 Soil properties 

The site for the Shanghai Tower is in the new Pudong development district of Shanghai. The 

groundwater level is about 0.5~1.5 [m] below ground level. The foundation depth of the tower is 

31.4 [m] below ground level. 

 

Geotechnical investigation indicates that the ground conditions comprise horizontally stratified 

subsurface profile which is complex and highly variable. The subsoil below the ground level is 

composed of clay, silty clay and sand, underlain by a completely decomposed granite. According 

to the soil type and physical properties, the subsoil is divided into nine layers and fourteen sub-

layers. The top layer is the bearing layer for shallow foundation while the fifth, seventh and 

ninth layers are the end-bearing layers for piles. 

 

The soil profile and geotechnical parameters are summarized in ‎Table 8-2. The subsoil layer 

under the raft up to 105 [m] deep are indicated in the boring log shown in ‎Figure 8-6.  
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Table 8-2 Summary of geotechnical profile and parameters 

Strata Sub-

strata 

Subsurface Material Level 

at top 

of 

stratum 

z 

[m] 

Modulus 

of 

compressibility 

 

Es 

[MPa] 

Bulk 

Density 

 

 

γBulk 

[kN/m
3
] 

1  Fill 4.5 0  

2  Plastic to soft-plastic silty clay 2.7 3.97 18.4 

3  
Flow plastic muddy silty clay 

interspersed with sandy silt 
1.5 3.84 17.7 

4  Flow plastic muddy clay -3.0 2.27 16.7 

5 
1-a Soft plastic clay -11.5 3.56 17.6 

1-b Soft plastic to plastic silty clay -15.5 5.29 18.4 

6  Hard plastic clay -20.0 6.96 19.8 

7 

1 
Medium dense to dense silty sand with 

sandy silt 
-24.0 11.45 18.7 

2 Dense silty sand -30.8 75 19.2 

3 
Dense silty sand with sandy silt and 

clay 
-59.1 60 19.1 

8  absent    

9 

1 Dense sandy silt -63.4 70 19.1 

2-1 
Dense silty sand with coarse and 

gravelly sand and clay 
-71.7 80 20.2 

2t 
Hard plastic to plastic silty clay with 

clayed silt 
-82.7 35 20.0 

2-2 
Dense silty sand with fine sand and 

sandy silt 
-84.0 85 19.3 

3 Dense fine sand -96.0 90 19.7 

3t 
Hard plastic to plastic silty clay with 

clayed silt 
-100.5 35 19.1 
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Figure 8-6 Boring log used in ELPLA analysis 
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8.8 Results 

‎Figure 8-7 to ‎Figure 8-11 show the settlement and pile reactions for the piled raft analyzed using 

the "Given load-settlement curve from pile load test" method. 
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Figure 8-7 Settlement under the piled raft 
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Figure 8-8 Self settlement of piles Sv [mm] 
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Figure 8-9 Interaction settlement of piles Srv [mm] 
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Figure 8-10 Total settlement of piles Sr [mm] 
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Figure 8-11 Pile reactions [MN]  
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8.9 Measurements and other results  

8.9.1 Measured settlement 

The construction of Shanghai started 29 November 2008 and finished on 6 September 2014. 

According to Su etc. al. (2014), the settlement of the core and mega columns reached 60 and 45 

[mm], respectively; on 30 April 2013 under nearly 75% of the building load. As expected, these 

values are less than the computed values because it doesn’t consider the long term settlement 

due to the consolidation of the clay layers. The soil below the tower will continue to consolidate 

until reaching the final settlement therefore calculation methods need to take consolidation effect 

into account. 

8.9.2 Calculated final settlement 

Several analyses were used to assess the response of the foundation for the Shanghai Tower. 

According to Sun etc. al. (2011), the computed values of maximum settlement ranges between 

101 and 143 [mm]. 

 

A comparison between the computed settlement obtained by ELPLA and that obtained by other 

methods is presented in ‎Table 8-3. 

 

Table 8-3 Comparison between ELPLA results and those of other methods 

Method 
Smax. 

[mm] 

Smin. 

[mm] 

SDiff. 

[mm] 

ELPLA  129 64 65 

Xiao etc. al. (2011) - Computed 143 44 99 

Xiao etc. al. (2011) - Predicted 112 68 44 

Tang and Zhao (2014) - Hybrid Method 107 90 17 

Tang and Zhao (2014) - Empirical Formula 121 - - 

Tang and Zhao (2014) - Predicted Method >120 - - 

Sun etc. al. (2011) - Computed 101 37 64 

 

 

 

8.10 Conclusion 

This case study shows that ELPLA is a practical tool for analyzing large piled raft problems in 

significantly lowered computational time. 
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