Beispiel 18: Überprüfung einer gelenkig gelagerten Platte

1 Aufgabenstellung

Zur Überprüfung der Rechengenauigkeit für die Finite-Element-Methode und des Konvergenzverhaltens der Steifigkeitsmatrix werden die Maximalwerte der Verschiebung w, Momente m_x , m_y und m_{xy} einer gelenkig gelagerten Rechteckplatte an verschiedenen Netzen von finiten Elementen verwendet. Die Platte trägt eine gleichförmige Last von $p = 100 \text{ [kN/m}^2\text{]}$, wie im Bild 29 gezeigt. Der Elastizitätsmodul des Plattenmaterials ist $E_b = 1.2 \times 10^7 \text{ [kN/m}^2\text{]}$ und die Poissonzahl ist $v_b = 0$ [-]. Die Plattendicke beträgt d = 0.1 [m].

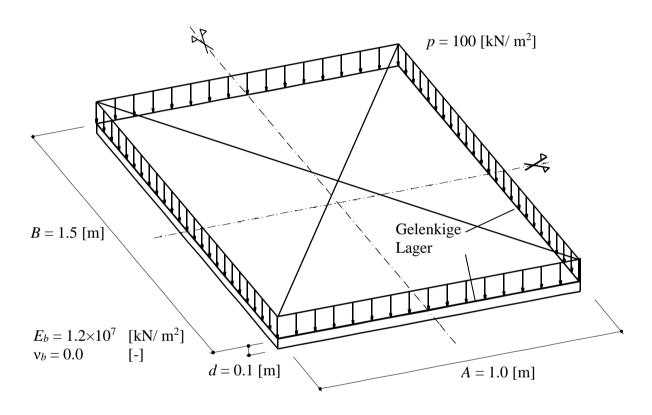


Bild 29 Abmessungen der Platte, FE-Netz und Lasten

2 Lösung der Aufgabe

Aufgrund der doppelten Symmetrie um die x- und y-Achse genügt es, ein Viertel der Platte zu berechnen. Die finiten Element-Netze der Platte werden im Bild 30 gezeigt. Die Ergebnisse von *ELPLA* werden mit den bekannten Plattentafeln von *Czerny* (1955) und mit denen von *Falter* (1992) nach der Finite-Element-Methode in den Tabelle 23 bis 26 verglichen. Aus diesen Tabellen ist ersichtlich, dass die Ergebnisse der Verschiebung von *ELPLA* mit denen von *Falter* (1992) übereinstimmen, bei Verwendung der Finite-Element-Methode. Eine ausreichende Genauigkeit für die Ergebnisse kann am Plattennetz von 4 Elementen entsprechend den Plattentafeln von *Czerny* berücksichtigt werden.

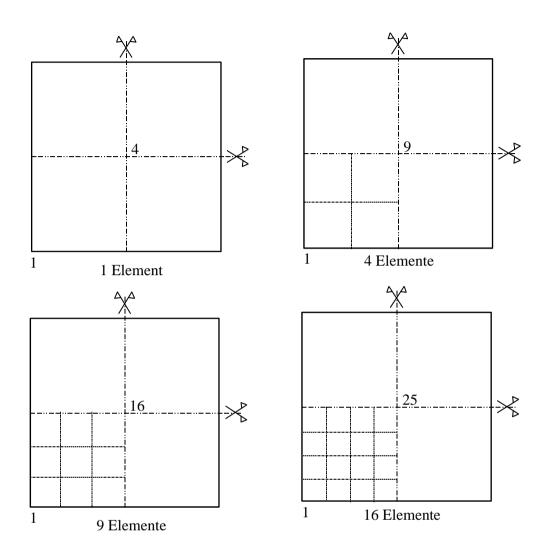


Bild 30 FE-Netze der Platte

Tabelle 23 Verschiebung w [cm] bei Verwenden der Plattentafeln von *Czerny* (1955), nach *Falter* (1992) und *ELPLA*

Anzahl der Elemente	Knoten-Nr.	Verschiebung w [cm]		
		Czerny (1955)	Falter (1992)	ELPLA
1	4	0.077	0.094	0.094
4	9		0.082	0.082
9	16		0.079	0.079
16	25		0.078	0.078

Beispiele zur Überprüfung des Programms ELPLA

Tabelle 24 Momente m_x [kN.m/m] nach Czerny (1955), Falter (1992) und ELPLA

Anzahl der Elemente	Knoten-Nr.	Momente m_x [cm]		
		Czerny (1955)	Falter (1992)	ELPLA
1	4	7.30	10.29	10.29
4	9		7.99	7.99
9	16		7.58	7.59
16	25		7.45	7.45

Tabelle 25 Momente m_y [kN.m/m] nach Czerny (1955), Falter (1992) und ELPLA

Anzahl der Elemente	Knoten-Nr.	Momente m_y [cm]		
		Czerny (1955)	Falter (1992)	ELPLA
1	4	2.88	3.36	3.36
4	6		3.42	3.29
9	12		2.98	2.98
16	20		2.89	2.89

Tabelle 26 Momente m_{xy} [kN.m/m] nach Czerny (1955), Falter (1992) und ELPLA

Anzahl der Elemente	Knoten-Nr.	Momente m_{xy} [cm]		
		Czerny (1955)	Falter (1992)	ELPLA
1	1	6.13	6.57	6.57
4	1		6.35	6.35
9	1		6.26	6.26
16	1		6.22	6.22