Analysis of Axisymmetric Structures and Tanks by the Program ELPLA

Part II: Verification Examples

M. El Gendy
O. El Gendy

GEOTEC Software Inc.
PO Box 14001 Richmond Road PO, Calgary AB, Canada T3E 7Y7
Tele.:+1(587) 332-3323
geotec @geotecsoftware.com
www.geotecsoftware.com
Table of Contents
Page
2 Verification Examples 2-5
2.1 Introduction 2-5
2.2 Axisymmetric structure problems 2-6
2.2.1 Coordinate Systems 2-6
2.2.2 Element Loads 2-7
2.2.3 Graphical output 2-8
2.3 Example 1: Circular loaded area resting on a thin clay layer 2-9
2.3.1 Description of the problem 2-9
2.3.2 Hand calculation 2-9
2.3.3 Settlement by ELPLA 2-10
2.4 Example 2: Circular loaded area resting on a thick clay layer 2-14
2.4.1 Description of the problem 2-14
2.4.2 Hand calculation 2-14
2.4.3 Settlement by ELPLA 2-16
2.5 Example 3: Circular loaded area resting on different soil layers 2-20
2.5.1 Description of the problem 2-20
2.5.2 Hand calculation 2-21
2.5.3 Settlement by ELPLA 2-22
2.6 Example 4: Circular plate subjected to a uniform load 2-26
2.6.1 Description of the problem 2-26
2.6.2 Hand calculation 2-27
2.6.3 Maximum deflection by ELPLA 2-27
2.7 Example 5: Annular plate on Winkler's medium 2-33
2.7.1 Description of the problem 2-33
2.7.2 Analysis of the plate 2-34
2.7.3 Results and discussions 2-34
2.7.4 Results by ELPLA 2-35
2.8 Example 6: Rigid circular raft on a deeply extended clay layer 2-39
2.8.1 Description of the problem 2-39
2.8.2 Clay properties 2-39
2.8.3 Analysis of the raft 2-39
2.8.4 Results and discussions 2-40
2.8.5 Rigid consolidation by ELPLA 2-41
2.9 Example 7: Rigid circular raft on an isotropic elastic half-space medium 2-46
2.9.1 Description of the problem 2-46
2.9.2 Analysis of the raft 2-46
2.9.3 Results and discussions 2-47
2.9.4 Settlement by ELPLA 2-47
2.10 Example 8: Tank with fixed base 2-52
2.10.1 Description of the problem 2-52
2.10.2 Numerical Analysis 2-52
2.10.3 Results and discussion 2-53
2.10.4 Conversion of the solution 2-56
2.11 Example 9: Tank with hinged base 2-58
2.11.1 Description of the problem 2-58
2.11.2 Numerical Analysis 2-58
2.11.3 Results and discussion 2-59
2.12 Example 10: Ring wall with variable wall thickness 2-63
2.12.1 Description of the problem 2-63
2.12.2 Analysis of the ring wall 2-64
2.12.3 Results and discussion 2-65
2.12.4 Results by ELPLA 2-65
2.13 Example 11: Tank covered with a spherical dome 2-71
2.13.1 Description of the problem 2-71
2.13.2 Numerical Analysis 2-72
2.13.3 Results and discussions 2-72
2.14 Example 12: Tank resting on Winkler's medium 2-77
2.14.1 Description of the problem 2-77
2.14.2 Numerical Analysis 2-77
2.14.3 Results and discussions 2-78
2.14.4 Conversion of the solution 2-81
2.15 Example 13: Tank with conical base resting on Winkler's medium 2-84
2.15.1 Description of the problem 2-84
2.15.2 Numerical Analysis 2-85
2.15.3 Results and discussions 2-85
2.16 Example 14: Tank resting on half space soil medium 2-89
2.16.1 Description of the problem 2-89
2.16.2 Numerical Analysis 2-90
2.16.3 Results and discussions 2-91
2.17 Example 15: Tank with different base thickness on half space soil medium 2-98
2.17.1 Description of the problem 2-98
2.17.2 Numerical Analysis 2-99
2.17.3 Results and discussions 2-100
2.18 Example 16: Water container with a conical base 2-104
2.18.1 Description of the problem 2-104
2.18.2 Numerical Analysis 2-105
2.18.3 Results and discussion 2-106
2.19 Example 17: Hyperbolic shell under different loads 2-117
2.19.1 Description of the problem 2-117
2.19.2 Numerical Analysis 2-118
2.19.3 Results and discussion 2-123
2.20 Example 18: A Silo filled with cement 2-138
2.20.1 Description of the problem 2-138
2.20.2 Pressure on the silo wall 2-139
2.20.3 Numerical Analysis 2-140
2.20.4 Results and discussion 2-141
2.21 References 2-142

Preface

Various problems in geotechnical Engineering can be investigated by the program ELPLA. The original version of $E L P L A$ was developed by the father of elastic foundation Prof. M. Kany, Prof. M. El Gendy and Dr. A. El Gendy. After the death of Prof. Kany, Prof. M. El Gendy and Dr. A. El Gendy further developed the program to meet the needs of practice.

This book describes procedures and methods available in ELPLA to analyze circular cylindrical shells structures. It is also considered, circular cylindrical tank resting on any layered compressible soil as one unit taking into account the soil-structure interaction effect.

The purpose of this text is to present the methods, equations, procedures, and techniques used in the formulation and development of the ELPLA function for analyzing tanks on different subsoil models. It is of value to be familiar with this information when using the software.

An understanding of these concepts will be of great benefit in applying the software, resolving difficulties and judging the acceptability of the results.

Two familiar types of subsoil models are considered, Winkler's model and Continuum model. In addition, the simple assumption model is also considered. This model assumes linear contact pressure on the base of the tank.

The mathematical solution of the circular cylindrical tanks is based on the Finite Element Method using axi-symmetric circular cylindrical shell elements.

In which, axi-symmetric shell finite elements represent the tank wall and tank base according to the nature geometry of the structure.

Based on his MSc research, El Gendy, O. (2016) had carried out a numerical modification on the methods in ELPLA for analyzing rafts to be applicable for analyzing cylindrical water storage tanks. Many tested examples are presented to verify and illustrate the available methods. Some of verification examples for analyzing cylindrical water storage tanks carried out by El Gendy, O. (2016) are presented in this book.

2 Verification Examples

2.1 Introduction

Most of mathematical models used in the analysis of circular cylindrical tanks resting on layered soil under static loading are new developed in the program ELPLA. ELPLA is a userfriendly computer program. It can analyze structures with different types of subsoil models. To verify the validity of this computer program, some problems published previously by researchers using different methods of analyses and models are compared with the results obtained by the analysis used in this book. A verification study is carried out using the computer program to analyze circular cylindrical tanks with different subsoil models. The mathematical solution of the circular cylindrical tanks is based on the Finite Element Method using circular cylindrical shell elements.

The verification analyses are focused on the validity of the structural analysis of circular cylindrical tanks. The mathematical model of the structural analysis is based on the Finite Element Method using circular cylindrical shell elements. Items to be checked under deferent conditions are internal forces, deformations and rotations in the tank wall and base.

2.2 Axisymmetric structure problems

The analysis of axisymmetric structure problems is now available in ELPLA (Figure 2.1). This book presents many examples for this type of problems. It is recommended to read this book to understand the procedures used by the program before starting to create any practical problem analysis.

Figure 2.1 Analysis of a water container

2.2.1 Coordinate Systems

There are two different coordinates for axisymmetric structure problems; global coordinate system and local coordinate system (Figure 2.2). Each of these coordinate systems is used to describe certain data such as the location of nodes or the direction of loads, displacements, internal forces and reactions. Understanding these different coordinate systems is essential for the user to define correctly the problem.

Figure 2.2 System Coordinates

2.2.2 Element Loads

As shown in Figure 2.3, ELPLA uses a different vertical direction for defining loads. The positive value of load means that it is a downward load. Nodal loads are applied on global coordinates while element loads are applied in three different cases as follow:
i. Self weight: A vertical uniform load distributed along the length of the element.
ii. Snow load: A vertical uniform load distributed along the horizontal projection of the element.
iii. Wind load: A uniform load distributed along the length of the element with a direction perpendicular to the element (local $\mathrm{r}^{`}$ axis).

Figure 2.3 Cases of element loads, nodal loads and nodal reactions with directions

2.2.3 Graphical output

The graphical output of results such as displacements, rotations and internal forces (bending moments, shear forces and normal forces) are drawn in locale coordinate.

2.3 Example 1: Circular loaded area resting on a thin clay layer

2.3.1 Description of the problem

To verify the settlement of a loaded area resting on a relative thin clay layer calculated by ELPLA using circular and annular elements, a hand calculation of a settlement for a relative thin soil layer under a circular loaded area is compared with that obtained by ELPLA.

A circular loaded area of a load $q=150\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ and radius $a=4[\mathrm{~m}]$ is acting on a relative thin clay layer as shown in Figure 2.4. Find the settlement of the clay layer under the center of the loaded area.

Figure 2.4 Soil profile under the circular loaded area

2.3.2 Hand calculation

If the clay layer is relatively thin and its thickness does not exceed on the footing length $H<2 a$, Quick ELPLA deals with the clay layer as one unit and considers the stress for the whole layer. The average stress $\Delta \sigma_{v a}$ in a relative thin clay layer of thickness H under the center of a circular loaded area q of a radius a is given by:

$$
\Delta \sigma_{v a}=\frac{q}{H}\left(H-\frac{H^{2}+2 a^{2}}{\sqrt{H^{2}+a^{2}}}+2 a\right)
$$

The average stress $\Delta \sigma_{v a}$ in the entire clay layer:

$$
\begin{aligned}
& \Delta \sigma_{v a}=\frac{150}{4}\left(4-\frac{4^{2}+2 \times 4^{2}}{\sqrt{4^{2}+4^{2}}}+2 \times 4\right) \\
& \Delta \sigma_{v a}=131.8\left[\mathrm{kN} / \mathrm{m}^{2}\right]
\end{aligned}
$$

Overburden stress σ_{o} at the middle of the clay layer $(z=2[m])$:

$$
\sigma_{o}=\gamma^{\prime} z_{2}=9 \times 2=18\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Settlement S_{c} of the clay layer:

$$
S_{c}=\frac{C_{c} H}{1+e_{o}} \log \frac{\Delta \sigma_{v a}+\sigma_{o}}{\sigma_{o}}=\frac{0.04 \times 4}{1+0.75} \log \frac{131.8+18}{18}=0.0841[\mathrm{~m}]=8.41[\mathrm{~cm}]
$$

2.3.3 Settlement by ELPLA

The settlement obtained from ELPLA at the center c of the circular loaded area is 8.40 [cm]. It is same as that of the hand calculation. The input data and results of $E L P L A$ are presented on the next pages.

ELPLA

2.4 Example 2: Circular loaded area resting on a thick clay layer

2.4.1 Description of the problem

To verify the settlement of a loaded area resting on a thick clay layer calculated by ELPLA using circular and annular elements, a hand calculation of a settlement for a thick soil layer under a circular loaded area is compared with that obtained by ELPLA.

A circular loaded area of a load $q=150\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ and radius $a=4[\mathrm{~m}]$ is acting on a thick clay layer as shown in Figure 2.5. Find the settlement of the clay layer under the center of the loaded area.

Figure 2.5 Soil profile under the circular loaded area

2.4.2 Hand calculation

ELPLA subdivides the thick clay layer into sub-layers, then the average stress in each sublayer is determined. Here, for simplifying the solution by the hand calculation, the stress is calculated at the middle of each sub-layer.

Stress σ_{z} at a depth z in the soil under the center of a circular loaded area q of radius a is given by:

$$
\sigma_{z}=q\left[1-\frac{z^{3}}{\left(a^{2}+z^{2}\right)^{3 / 2}}\right]
$$

Stress σ_{z} at the middle of the first sub layer $(z=1[\mathrm{~m}])$:

$$
\sigma_{1}=150\left[1-\frac{1^{3}}{\left(16+1^{2}\right)^{3 / 2}}\right]=147.86\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Stress σ_{z} at the middle of the second sub layer $(z=3[\mathrm{~m}])$:

$$
\sigma_{2}=150\left[1-\frac{3^{3}}{(16+9)^{3 / 2}}\right]=117.6\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Stress σ_{z} at the middle of the third sub layer $(z=5[\mathrm{~m}])$:

$$
\sigma_{3}=150\left[1-\frac{5^{3}}{(16+25)^{3 / 2}}\right]=78.58\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Overburden stress σ_{o} at the middle of the first sub layer ($z=1[\mathrm{~m}]$):

$$
\sigma_{o}=\gamma^{\prime} z_{1}=9 \times 1=9\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Overburden stress σ_{o} at the middle of the second sub layer $(z=3[m])$:

$$
\sigma_{o}=\gamma^{\prime} z_{2}=9 \times 3=27\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Overburden stress σ_{o} at the middle of the third sub layer $(z=5[\mathrm{~m}])$:

$$
\sigma_{o}=\gamma^{\prime} z_{3}=9 \times 5=45\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Settlement S_{c} of the first sub layer:

$$
s_{3}=\frac{C_{c} h}{1+e_{o}} \log \frac{\Delta \sigma+\sigma_{o}}{\sigma_{o}}=\frac{0.04 \times 2}{1+0.75} \log \frac{147.86+9}{9}=0.0567[\mathrm{~m}]=5.67[\mathrm{~cm}]
$$

Settlement s of the second sub layer:

$$
s_{3}=\frac{C_{c} h}{1+e_{o}} \log \frac{\Delta \sigma+\sigma_{o}}{\sigma_{o}}=\frac{0.04 \times 2}{1+0.75} \log \frac{117.6+27}{27}=0.0333[\mathrm{~m}]=3.33[\mathrm{~cm}]
$$

Settlement s of the third sub layer:

$$
s_{3}=\frac{C_{c} h}{1+e_{o}} \log \frac{\Delta \sigma+\sigma_{o}}{\sigma_{o}}=\frac{0.04 \times 2}{1+0.75} \log \frac{78.58+45}{45}=0.02[\mathrm{~m}]=2.00[\mathrm{~cm}]
$$

Total settlement s of all layers:

$$
S_{c t}=s_{1}+s_{2}+s_{3}=5.67+3.33+2.00=11.01[\mathrm{~cm}]
$$

2.4.3 Settlement by ELPLA

The exact settlement obtained from ELPLA at the center c of the circular loaded area is 10.65 [cm]. It is nearly same as that of the hand calculation with a difference of 0.35 [cm]. The input data and results of ELPLA are presented on the next pages.

Method (9) (Layered soil model)
Flexible Foundation

Elements of the loaded area

GEOTEC Software Inc

PO Box 14001 Richmond Road PO, Cal gary AB, Canada BE7Y7

Scale 1:28	Title: Settlement of a circular loaded area resting on a thick clay layer
File: LoadedAreaThick	Date: 05/01/2020
Page No.:	Project: Verification Examples

ELPLA

2.5 Example 3: Circular loaded area resting on different soil layers

2.5.1 Description of the problem

To verify the settlement of a loaded area resting on different soil layers calculated by ELPLA using circular and annular elements, a hand calculation of a settlement for a three different soil layers under a circular loaded area is compared with that obtained by ELPLA.

A circular loaded area of a radius $a=5$ [m] acting on three different soil layers as shown in Figure 2.6. Find the total settlement of the three layers at the center of the loaded area.

Figure 2.6 Soli profile under the circular loaded area

2.5.2 Hand calculation

Stress σ_{z} at a depth z in the soil under the center of a circular loaded area is given by:

$$
\begin{equation*}
\sigma_{z}=q\left[1-\frac{z^{3}}{\left(a^{2}+z^{2}\right)^{3 / 2}}\right] \tag{1}
\end{equation*}
$$

Stress σ_{z} at the middle of the first layer $(z=1[\mathrm{~m}])$:

$$
\sigma_{1}=100\left[1-\frac{1^{3}}{\left(25+1^{2}\right)^{3 / 2}}\right]=99.25\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Stress σ_{z} at the middle of the second layer $(z=3[\mathrm{~m}])$:

$$
\sigma_{2}=100\left[1-\frac{3^{3}}{(25+9)^{3 / 2}}\right]=86.38\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Stress σ_{z} at the middle of the third layer $(z=6[m])$:

$$
\sigma_{3}=100\left[1-\frac{6^{3}}{(25+36)^{3 / 2}}\right]=54.66\left[\mathrm{kN} / \mathrm{m}^{2}\right]
$$

Overburden stress σ_{o} at the middle of the third layer:

$$
\begin{aligned}
& \sigma_{o}=2 \times 17.5+2 \times 8+1.5 \times 8.69=64.035\left[\mathrm{kN} / \mathrm{m}^{2}\right] \\
& \sigma_{o}=2 \times 17.5+2 \times 8+2.5 \times 8.69=72.725\left[\mathrm{kN} / \mathrm{m}^{2}\right] \\
& \sigma_{o}=2 \times 17.5+2 \times 8+3.5 \times 8.69=81.415\left[\mathrm{kN} / \mathrm{m}^{2}\right] \\
& \sigma_{o}=2 \times 17.5+2 \times 8+4.5 \times 8.69=90.105\left[\mathrm{kN} / \mathrm{m}^{2}\right]
\end{aligned}
$$

Settlement s of the first layer:

$$
s_{1}=\frac{1}{E_{s}} \Delta \sigma h=\frac{1}{8000} \times 99.25 \times 2=0.0248[\mathrm{~m}]=2.48[\mathrm{~cm}]
$$

Settlement s of the second layer:

$$
s_{2}=m_{v} \Delta \sigma h=2 \times 10^{-4} \times 86.38 \times 2=0.0346[\mathrm{~m}]=3.46[\mathrm{~cm}]
$$

Settlement s of the third layer:

$$
\begin{aligned}
& s_{3}=\frac{C_{c} h}{1+e_{o}} \log \frac{\Delta \sigma+\sigma_{o}}{\sigma_{o}}=\frac{0.0425 \times 4}{1+0.85} \log \frac{54.66+68.38}{68.38}=0.0234[\mathrm{~m}]=2.34[\mathrm{~cm}] \\
& s_{3}=\frac{C_{c} h}{1+e_{o}} \log \frac{\Delta \sigma+\sigma_{o}}{\sigma_{\mathrm{o}}}=\frac{0.0425 \times 4}{1+0.85} \log \frac{54.66+68.38}{68.38}=0.0234[\mathrm{~m}]=2.34[\mathrm{~cm}]
\end{aligned}
$$

Total settlement s of all layers:

$$
s_{t}=s_{1}+s_{2}+s_{3}=2.48+3.46+2.34=8.28[\mathrm{~cm}]
$$

2.5.3 Settlement by ELPLA

The exact settlement obtained from $E L P L A$ at the center c of the circular loaded area is 8.09 [cm]. It is nearly same as that of the hand calculation with a difference of $0.19[\mathrm{~cm}]$. The input data and results of ELPLA are presented on the next pages.

Method(9) (Layered soil model)
Flexible Foundation

Elements of the loaded area

Scale 1:32	Title: Settlement of a circular loaded area resting on different soil layers
File: LoadedAreaLayeres Date: 05/01 $/ \mathbf{2 0 2 0}$	
Page No.:	Project: Verification Examples

2.6 Example 4: Circular plate subjected to a uniform load

2.6.1 Description of the problem

To verify the maximum deflection of the circular plate subjected to uniform load calculated by ELPLA using circular and annular elements, a hand calculation of a maximum deflection of a plate with simply supported edge and clamped edge under a uniform load is compared with that obtained by ELPLA.

According to theory of plate (Ventsel, E./ Krauthammer, T. (2001)), the maximum deflection $w_{\max }[\mathrm{m}]$ of the plate with simply supported edge under a uniform load, which occurs at the center, is given by:

$$
w_{\max }=\frac{P r^{4}\left(5+v_{c}\right)}{64 D\left(1+v_{c}\right)}
$$

while the maximum deflection $w_{\max }[\mathrm{m}]$ of the plate with clamped edge under a uniform load, which occurs at the center, is given by:

$$
w_{\max }=\frac{P r^{4}}{64 D}
$$

where:
$v_{c} \quad$ Poisson's ratio of the plate material [-]
$E_{c} \quad$ Young's modulus of the plate material $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
$r \quad$ Plate radius [m]
$p \quad$ Load intensity on the plate $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
$D \quad$ Flexural rigidity of the plate [-]
Flexural rigidity of the plate D is given by following equation:

$$
D=\frac{E_{\mathrm{c}} t^{3}}{12\left(1-v_{c}^{2}\right)}
$$

where t is the plate thickness [m]
A circular plate subjected to a uniform load is chosen and subdivided into 10 equal annular regions. Load on the plate, plate radius and the elastic properties of the plate material are:

Radius of the plate
Thickness of the plate
Uniform load on the raft
Young's modulus of the plate material Poisson's ratio of the plate material

$$
\begin{array}{lll}
r & =5 & {[\mathrm{~m}]} \\
t & =0.25 & {[\mathrm{~m}]} \\
p & =100 & {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \\
E_{c} & =2.7 \times 10^{7} & {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \\
v_{c} & =0.2 & {[-]}
\end{array}
$$

2.6.2 Hand calculation

Flexural rigidity of the plate D is calculated from:

$$
\begin{aligned}
D & =\frac{E_{\mathrm{c}} t^{3}}{12\left(1-v_{c}^{2}\right)} \\
D & =\frac{2 \times 10^{7} \times 0.25^{3}}{12\left(1-0.25^{2}\right)}=27777.77[\mathrm{kN} . \mathrm{m}]
\end{aligned}
$$

The maximum deflection $w_{\max }[\mathrm{m}]$ of the plate with simply supported edge under a uniform load is calculated from:

$$
\begin{aligned}
& w_{\max }=\frac{P r^{4}\left(5+v_{c}\right)}{64 D\left(1+v_{c}\right)} \\
& w_{\max }=\frac{100 \times 5^{4}(5+0.25)}{64 \times 27777.77(1+0.25)}=0.1476[\mathrm{~m}] \\
& w_{\max }=14.76[\mathrm{~cm}]
\end{aligned}
$$

The maximum deflection $w_{\max }[\mathrm{m}]$ of the plate with clamped edge under a uniform load is calculated from:

$$
\begin{aligned}
& w_{\max }=\frac{P r^{4}}{64 D} \\
& w_{\max }=\frac{100 \times 5^{4}}{64 \times 27777.77}=0.0352[\mathrm{~m}] \\
& w_{\max }=3.52[\mathrm{~cm}]
\end{aligned}
$$

2.6.3 Maximum deflection by ELPLA

The maximum deflection obtained from ELPLA at the center of the plate with simply supported edge is $14.59[\mathrm{~cm}]$, while that of the plate with clamped edge is $3.56[\mathrm{~cm}]$, Table 2.1. It is nearly same as that of the hand calculation with a difference of $0.17[\mathrm{~cm}]$ and 0.04 [cm], respectively. The input data and results of $E L P L A$ are presented on the next pages.

Table 2.1 Comparison of the maximum deflection obtained by ELPLA with those obtained by hand calculation using plate theory

	Simply supported edge		Clamped edge	
	Plate theory	$E L P L A$	Plate theory	ELPLA
	14.76	14.59	3.52	3.56

Analysis of rotational shell

- $\mathrm{w}=0$

Boundary conditions

GEOTEC Software Inc
POBox 14001 Richmond Ro ad PQ Calgary AB, Canada T3E 7Y7

Scale 1:35	Titte: Pate with simply supported edge under a uniform load
File: SimplySupportedPlate	Date: $11 / 01 / 2020$
Page No.:	Project Verification Examples

ELPLA

ELPLA

2.7 Example 5: Annular plate on Winkler's medium

2.7.1 Description of the problem

To verify the analysis of annular plates on Winkler's medium carried out by ELPLA using circular and annular elements, results of a simply supported annular plate on Winkler's medium obtained by Karaşin et al., (2014) using a finite grid solution for circular plates on elastic foundations are compared with those obtained by ELPLA.

A simply supported annular plate subjected to a uniform load on Winkler's medium is chosen as shown in Figure 2.7. Load on the plate, plate radii, elastic properties of the soil and the plate are:

Inner radius of the plate
Outer radius of the plate Thickness of the plate
Uniform load on the raft
Modulus of sub grade reaction of the soil Young's modulus of the plate material Poisson's ratio of the plate material

r_{1}	$=2.5$	$[\mathrm{~m}]$
r_{2}	$=5$	$[\mathrm{~m}]$
t	$=0.25$	$[\mathrm{~m}]$
p	$=200$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
k_{s}	$=10000$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
E_{c}	$=2.7 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
v_{c}	$=0.2$	$[-]$

Figure 2.7 A simply supported annular plate subjected to a uniform load (after Karassin et al., (2014))

2.7.2 Analysis of the plate

The available method "Constant Modulus of Subgrade Reaction /2" in ELPLA is used here to determine the vertical displacement and moment of the plate on Winkler's medium. Figure 2.8 shows the annular plate with 10 annular regions and supports.

Figure 2.8 Annular plate with 10 annular regions and supports

2.7.3 Results and discussions

Karaşin et al., (2014) analyzed the annular plate using a finite grid solution for circular plates on elastic foundations and then compared their results with the FGM solution obtained by Utku and Inceleme (2000).

Table 2.2 and Table 2.3 show the comparison of the maximum moment and displacements obtained by ELPLA with those obtained by Karaşin et al., (2014) and Utku and Inceleme (2000).

Table 2.2 Comparison of the maximum moment obtained by ELPLA with those obtained by Karaşin et al., (2014) and Utku and Inceleme (2000)

	Karaşin et al., (2014)	Utku and Inceleme (2000)	ELPLA
Maximum moment $M y[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	134.5	140.5	136.0

Table 2.3 Displacements $w[\mathrm{~mm}]$ under the middle of the annular plate obtained by ELPLA with those obtained by Karaşin et al., (2014) and Utku and Inceleme (2000)

r $[\mathrm{~m}]$	Karaşin et al., (2014)	Utku and Inceleme (2000)	ELPLA
2.75	0.81	0.85	0.80
3.00	1.51	1.59	1.49
3.25	2.04	2.16	2.01
3.50	2.35	2.49	2.32
3.75	2.43	2.58	2.40
4.00	2.28	2.43	2.25
4.25	1.92	2.05	1.90
4.5	1.39	1.49	1.37
4.75	0.73	0.78	0.72

It is obviously from the comparison that results of the simply supported annular plate subjected to a uniform load and resting on Winkler's medium obtained by ELPLA are nearly equal to those obtained by Karaşin et al., (2014) and Utku and Inceleme (2000).

2.7.4 Results by ELPLA

Results of ELPLA are presented on the next pages. By comparison, one can see a good agreement with those obtained by other published solutions.

ELPLA

Method (2) (Analysis of rotational shell)
Variable Modulus of subgrade Reaction
Distance x [m]

Base contact pressures

Section in shell base

	GEOTEC Software Inc
	PO Box 14001 Richmond Road PO, Calgary AB, Canada T3E 7Y7
Scale: 32	Project: Kara?in et al., (2014): A Finite Grid Solution for Circular Plates on Elastic Foundations
File: Karasin	Date: 11/01/2020
Page No.:	Title: Simple support annular plate on Winkler's medium

2.8 Example 6: Rigid circular raft on a deeply extended clay layer

2.8.1 Description of the problem

To verify the analysis of a rigid circular raft on a deeply extended clay layer calculated by ELPLA using circular and annular elements, contact pressure of a rigid circular raft obtained by the solutions of Borowicka (1939) and the settlement at the characteristic point according to Graßhoff (1955) are compared with those obtained by ELPLA.

A circular raft of a radius $a=5.0[\mathrm{~m}]$ on a deeply extended clay layer is chosen and subdivided into 25 annular regions as shown in Figure 2.9. The raft is subjected to an average uniform load of $p=100\left[\mathrm{kN} / \mathrm{m}^{2}\right]$.

Figure 2.9 Rigid circular raft with dimension and annular regions

2.8.2 Clay properties

The clay has the following properties:

Compression index
Initial void ratio
Unit weight of the clay

$$
\begin{array}{lll}
C_{c} & =0.07 & {[-]} \\
e_{o} & & =0.85 \\
\gamma^{\prime} & & {[-]} \\
& =8.69 & {\left[\mathrm{kN} / \mathrm{m}^{3}\right]}
\end{array}
$$

2.8.3 Analysis of the raft

The analytical contact pressure distribution under the rigid circular raft is derived with the assumption of a semi-infinite soil layer. According to Borowicka (1939), the contact pressure $q\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ under a rigid circular raft on isotropic elastic half-space medium may be evaluated by

$$
\begin{equation*}
q=\frac{P r}{2 \sqrt{r^{2}-e^{2}}} \tag{2}
\end{equation*}
$$

where:
$r \quad$ Raft radius [m]
$p \quad$ Load intensity on the raft $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
$e \quad$ distance from the center [m]
The definition of the characteristic point according to Graßhoff (1955) can be used to verify the numerical solutions. The characteristic point is defined as that point of a surface area loaded by a uniformly distributed pressure, where the settlement s_{o} due to that pressure is identical with the displacement w_{o} of a rigid raft of the same shape and loading. For a circular raft, the characteristic point lies at distance $a_{c}=0.845 a$ from the center. Therefore, the analysis is carried out also for a flexible raft, where the contact stress is equal to the applied stress on the soil.

ELPLA

2.8.4 Results and discussions

Figure 2.10 shows the consolidation settlement at the middle of the raft. Table 2.4 compares the consolidation settlements at the characteristic point for the rigid raft with taht for the flexible raft. It can be clearly observed from Figure 2.10 and from Table 2.4 that the settlements at characteristic point for the flexible raft are nearly equal to that for the rigid raft with difference 4%.

Figure 2.11 shows the comparison of the contact pressure ratio $q / p[-]$ at the at the middle of the raft. It can be found from the figures that the results of the circular rigid raft obtained by the $E L P L A$ are nearly equal to that obtained by semi-analytical procedure.

Table 2.4 Consolidation settlements $s[\mathrm{~cm}]$ at the characteristic point

	rigid raft $[\mathrm{cm}]$	Flexible raft at characteristic point $[\mathrm{cm}]$
Settlement	17.51	16.77

Figure 2.10 Consolidation settlement $s[\mathrm{~cm}]$ at the middle of the raft

Figure 2.11 Contact pressure ratio $q / p[-]$ at the middle of the raft

2.8.5 Rigid consolidation by ELPLA

The input data and results of $E L P L A$ are presented on the next pages.

ELPLA

\square
Method(8) (Half Space model)
Modulus of Compressibility for Rigid Raft

Raft with annular elments

GEOTEC Software In
POBox 14001 Richmond Ro ad PO, Calgary AB, Canada BE 7 Y 7

Scale 1:35	Title: Rigid circuar raft on a deeply extended clay lay
File: RigidRaft	Date: 13/01 2020
Page No.:	Project Verification Examples

Method (8) (Analysis of rotational shell)
Modulus of Compressibility for Rigid Raft (Half Space model)

Base settlements
Section in shell base

	GEOTEC Software Inc
	PO Box 14001 Richmond Road PO, Calgary AB, Canada T3E 7Y7
Scale: 33	Project: Verification Examples
File: RigidRaft	Date: 13/01/2020
Page No.:	Title: Rigid circular raft on a deeply extended clay layer

ELPLA

Method (8) (Analysis of rotational shell)
Modulus of Compressibility for Rigid Raft (Half Space model)

Base contact pressures
Section in shell base

GEOTEC Software Inc	
	PO Box 14001 Richmond Road PO, Calgary AB, Canada T3E 7Y7
Scale: 32	Project: Verification Examples
File: RigidRaft	Date: 13/01/2020
Page No.:	Title: Rigid circular raft on a deeply extended clay layer

2.9 Example 7: Rigid circular raft on an isotropic elastic half-space medium

2.9.1 Description of the problem

To verify the settlement of a rigid circular raft resting on an isotropic elastic half-space medium calculated by ELPLA using circular and annular elements, results of a rigid circular raft obtained by other analytical solutions from Borowicka (1939) and numerical solution from Selvadurai (1979) are compared with those obtained by ELPLA.

According to Borowicka (1939), the vertical displacement $w[\mathrm{~m}]$ of a rigid circular raft on isotropic elastic half-space medium may be evaluated by

$$
w=\frac{4\left(1-v_{s}^{2}\right) P r}{\pi E_{s}} I
$$

where:
$v_{s} \quad$ Poisson's ratio of the soil [-]
$E_{s} \quad$ Young's modulus of the soil $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
r Raft radius [m]
$p \quad$ Load intensity on the raft $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
$I \quad$ Displacement factor [-]
while the contact pressure distribution $q\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ under the raft at a distance $e[\mathrm{~m}]$ from the center may be evaluated by

$$
q=\frac{P r}{2 \sqrt{r^{2}-e^{2}}}
$$

A circular raft on isotropic elastic half-space soil medium is chosen and subdivided into 10 equal annular regions. Load on the raft, raft radius and the elastic properties of the soil are chosen to make the first term from Eq. 1 equal to 0.01, hence:

Raft radius $r=10 \quad$ [m]
Uniform load on the raft $p=100 \quad\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Young's modulus of the soil $E_{s} \quad=119366 \quad\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the soil $v_{s}=0.25 \quad[-]$

2.9.2 Analysis of the raft

The available method "Rigid raft 8 " in ELPLA is used here to determine the vertical displacement of the raft on isotropic elastic half-space medium. Figure 2.12 shows a radial strip of the raft with annular regions.

Figure 2.12 A radial strip of the rigid raft with 10 annular regions

2.9.3 Results and discussions

Table 2.5 shows the comparison of the displacement factor I obtained by ELPLA with those obtained by Borowicka (1939) and Selvadurai (1979). Besides, Figure 2.13 and Table 2.6 show the comparison of the contact pressure ratio $q / p[-]$ at the middle section of the raft obtained by ELPLA with those obtained by Borowicka (1939) and Selvadurai (1979).

It is obviously from the comparison that results of the circular rigid raft obtained by ELPLA are nearly equal to those obtained by Borowicka (1939) and Selvadurai (1979). It is evident that the numerical analysis for both ELPLA and Selvadurai (1979) gives contact pressure nearly equal to that of analytical analysis for all locations except near the boundary of the rigid raft.

Table 2.5 Comparison of the displacement factor I obtained by ELPLA with those obtained by Borowicka (1939) and Selvadurai (1979)

	Borowicka (1939)	Selvadurai (1979)	ELPLA
Central displacement $I[-]$	1.2337	1.2451	1.2045

2.9.4 Settlement by ELPLA

The input data and results of $E L P L A$ are presented on the next pages. By comparison, one can see a good agreement with those obtained by other published solutions.

ELPLA

Table 2.6 Contact pressure ratio $q / p[-]$ under the middle of the circular rigid raft obtained by ELPLA with those obtained by Borowicka (1939) and Selvadurai (1979)

r / e	Borowicka (1939)	Selvadurai (1979)	ELPLA
1	-		10.5666
0.9743	2.2214	3.0264	1.0231
0.9216	1.2882	1.3089	1.2614
0.8654	0.9978	1.0407	0.9265
0.8056	0.8440	0.8719	0.8011
0.7409	0.7445	0.7660	0.7125
0.6698	0.6733	0.6909	0.6483
0.5901	0.6193	0.6343	0.6000
0.4977	0.5765	0.5896	0.5607
0.3817	0.5409	0.5559	0.5278
0	0.5000	0.5154	0.5278

Figure 2.13 Contact pressure ratio $q / p[-]$ under the middle of the circular rigid raft

ELPLA

ELPLA

2.10 Example 8: Tank with fixed base

2.10.1 Description of the problem

A closed form solution for axi-symmetrically circular cylindrical tank is available in the reference Bakhoum (1992). To verify the finite element analysis of shell structures and to test the limitation of mesh size, the internal forces, horizontal displacement and meridional rotation calculated analytically by the available closed form solution are compared with those obtained by the finite element analysis of ELPLA using circular cylindrical shell elements.

A circular cylindrical tank of a radius of $a=7[\mathrm{~m}]$ and a height of $H=5[\mathrm{~m}]$ is considered as shown in Figure 2.14. Thickness of the tank wall is $t=0.25[\mathrm{~m}]$. The tank is filled with water. The lower edge of the tank is clamped. Figure 2.14 shows the circular cylindrical tank with dimensions, while the tank material and unit weight of the water are listed in Table 2.7.

Table 2.7 Tank material and water unit weight

Modulus of Elasticity of the tank material	E_{c}	$=2 \times 10^{7}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	
Poisson's ratio of the tank material	v_{c}	$=0.15$	$[-]$
Unit weight of the water	γ_{w}	$=10$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

Figure 2.14 Cylindrical circular tank with dimensions

2.10.2 Numerical Analysis

To examine the accuracy of the numerical analysis of circular cylindrical shell tank using the finite element method, the meridional moment M_{y} at the tank base is verified using different mesh sizes. As shown in Figure 2.15 the height of the tank is divided into 5 equal segments. In each segment, element size and number of elements are varied for different cases. Chosen of total elements in each case are $5,10,20,25,50$ and 80 , which give element sizes of 100 , $50,25,10$, and $6.25[\mathrm{~cm}]$.

Figure 2.15 Finite element mesh of the tank

2.10.3 Results and discussion

Results of numerical analysis along the wall height are compared with those of the closed form solution. Figure 2.16 shows the meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$, Figure 2.17 shows the radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$, Figure 2.18 shows the horizontal displacement v_{h} and Figure 2.19 shows the meridional rotation v_{m} with tank height. The analysis is carried out with total elements along the wall height equal to 50 , which gives an element size of $10[\mathrm{~cm}]$. These figures show that verification results of the available finite element analysis are in an excellent agreement with those of the analytical solution of Bakhoum (1992). Table 2.8 show a comparison between maximum internal forces obtained from analytical solution and those obtained from ELPLA using circular cylindrical shell elements. The table shows that the error in the maximum values of radial force and meridional rotation is about 0.5%, while that of the horizontal displacement is 0.74%. The error in the maximum meridional moment is about 7%.

Figure 2.16 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with tank height.

Figure 2.17 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with tank height.

Figure 2.18 Horizontal displacement v_{h} with tank height.

Figure 2.19 Meridional rotation v_{m} with tank height.

ELPLA

Table 2.8 Comparison between maximum internal forces and deformations obtained from analytical solution and those obtained from ELPLA using circular cylindrical shell elements

Result	Type of analysis		Difference
	Bakhoum (1992)	ELPLA	
Maximum positive meridional moment $M_{y}{ }^{+}$	$\begin{gathered} M_{y}{ }^{+} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{y}{ }^{+} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \Delta M_{y}{ }^{+} \\ {[\%]} \\ \hline \end{gathered}$
	5.37	5.37	0.00
Maximum negative meridional moment $M_{y}{ }^{\text {- }}$	$\begin{gathered} M_{y}^{-} \\ {[\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} M_{y}^{-} \\ {[\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \Delta M_{y}^{-} \\ {[\%]} \end{gathered}$
	-20.38	-18.97	6.92
Maximum radial force N_{r}	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{aligned} & \Delta N_{r} \\ & {[\%]} \\ & \hline \end{aligned}$
	193.74	194.74	0.52
Maximum Horizontal displacement v_{h}	$\begin{gathered} v_{h} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} v_{h} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \Delta v_{h} \\ & {[\%]} \end{aligned}$
	0.271	0.268	1.107
Maximum meridional rotation v_{m}	$\begin{gathered} v_{m} \\ {[\mathrm{rad}]} \end{gathered}$	$\begin{gathered} v_{m} \\ {[\mathrm{rad}]} \end{gathered}$	$\begin{aligned} & \Delta v_{m} \\ & {[\%]} \\ & \hline \end{aligned}$
	2.18106×10^{-4}	2.165×10^{-4}	0.74

2.10.4 Conversion of the solution

Figure 2.20 shows the convergence accuracy of the circular cylindrical shell element with different No. of elements. The figure show that element with size of about 25 [cm] gives a good result with an error less than 20%, while element with size of about $10[\mathrm{~cm}]$ gives a good result with an error less than 10% compared with the analytical solution. This conclusion concerning element size will be considered in all analyses of shell structures in these theses.

Verification Examples

Figure 2.20 Convergence accuracy of the circular cylindrical shell element

ELPLA

2.11 Example 9: Tank with hinged base

2.11.1 Description of the problem

A method based on analytical solutions of the differential equation that governs the behavior of the wall of a cylindrical tank is available in the reference Godbout et al. (2003). To verify the finite element analysis of shell structures, the internal forces obtained by this method are compared with those obtained by ELPLA using circular cylindrical shell elements.

A circular cylindrical tank of a radius of $a=15[\mathrm{~m}]$ and a height of $H=3.7[\mathrm{~m}]$ is considered as shown in Figure 2.14Figure 2.21. Thickness of the tank wall is $t=0.2$ [m]. The lower edge of the tank is hinged. The tank material has the following properties:

Modulus of Elasticity of the tank material $\quad E_{c}=3 \times 10^{7}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ Poisson's ratio of the tank material

$$
\begin{array}{ll}
E_{c} & =3 \times 10^{7}\left[\mathrm{kN} / \mathrm{m}^{2}\right] \\
v_{c} & =0.17 \quad[-]
\end{array}
$$

Figure 2.21 Cylindrical circular tank with dimensions

2.11.2 Numerical Analysis

In the analysis, the height of the tank is divided into 14 segments $(12 \times 0.25[\mathrm{~m}]+2 \times 0.35[\mathrm{~m}])$ as shown in 1 .

Figure 2.22 Finite element mesh of the tank with boundary conditions

Meridional moment M_{y} and radial force N_{r} are determined for the following cases:

1. Fully filled tank with water, Figure 2.23. Unit weight of the water $\gamma_{w}=10\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

Figure 2.23 Fully filled tank with water
2. Tank with a ground level of $H s=2[\mathrm{~m}]$ above the base, Figure 2.24. The active earth press is $k s . \gamma_{s}=5.7\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

Figure 2.24 Tank with a ground level of $H s=2[\mathrm{~m}]$ above the base
3. Tank under a partially uniform load on the wall $\mathrm{q}=-5\left[\mathrm{kN} / \mathrm{m}^{2}\right]$, Figure 2.25. The load has a height of $H s=2[\mathrm{~m}]$ from the base.

Figure 2.25 Tank under a partially uniform load on the wall

2.11.3 Results and discussion

Results of ELPLA using the finite element analysis along the wall height are compared with those obtained by Godbout et al. (2003). Results are plotted in Figure 2.26 to Figure 2.31. These figures show that results of $E L P L A$ are in a good agreement with those of Godbout et al. (2003).

Figure 2.26 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with wall height. Case 1

Figure 2.27 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with wall height. Case 1

Verification Examples

Figure 2.28 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with wall height. Case 2

Figure 2.29 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with wall height. Case 2

Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$

Figure 2.30 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with wall height. Case 3

Figure 2.31 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with wall height. Case 3

2.12 Example 10: Ring wall with variable wall thickness

2.12.1 Description of the problem

An example for cylindrical shells with variable wall thickness using the finite difference method is available in the reference Naïmi (1957). To verify the finite element analysis of shell structures, the internal forces and horizontal displacement calculated numerically by the finite difference method are compared with those obtained by ELPLA using circular cylindrical shell elements.

A ring wall of a radius $a=100[\mathrm{~m}]$ and a height $H=100.1[\mathrm{~m}]$ is considered as shown in Figure 2.32. The wall of the ring has a variable thickness, at the base the thickness is $h_{11}=$ 13.3 [m], while at the top the thickness is $h_{0}=4[\mathrm{~m}]$, thickness in between $h[\mathrm{~m}]$ can be obtained from the following equation:

$$
h=\frac{4 e^{1.2}}{100} x
$$

where x is the distance from the base in [m].

Figure 2.32 Ring wall with dimensions (after Naïmi (1957))

ELPLA

The ring wall is exposed to a hydrostatic water pressure and is fixed at the base. The wall material and unit weight of the water are listed in Table 2.9.

Table 2.9 Wall material and water unit weight

Modulus of Elasticity of the tank material	E_{c}	$=2.1 \times 10^{7}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	
Poisson's ratio of the tank material	v_{c}	$=0$	$[-]$
Unit weight of the water	γ_{w}	$=10$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

2.12.2 Analysis of the ring wall

In the analysis, the total height of the wall is divided into 11 segments with a constant length; each is (Figure 2.33):

$$
\Delta x=\frac{100.10}{11}=9.10[\mathrm{~m}]
$$

$\square \mathrm{pt}=4.231[\mathrm{~m}]$
$\square \mathrm{pt}=4.719[\mathrm{~m}]$
$\square \mathrm{pt}=5.2635[\mathrm{~m}]$
$\square \mathrm{pt}=5.871[\mathrm{~m}]$
$\square \mathrm{pt}=6.548[\mathrm{~m}]$
$\square \mathrm{pt}=7.3035[\mathrm{~m}]$
$\square \mathrm{pt}=8.1465[\mathrm{~m}]$
$\square \mathrm{pt}=9.0865[\mathrm{~m}]$
$\square \mathrm{pt}=10.135[\mathrm{~m}]$
$\square \mathrm{pt}=11.3045[\mathrm{~m}]$
$\square \mathrm{pt}=12.6085[\mathrm{~m}]$

4.231	
4.719	
5.264	
5.871	
6.548	
7.304	
8.146	
9.087	
10.135	
11.304	
12.608	

Figure 2.33 Finite element mesh of the ring wall with wall thickness

2.12.3 Results and discussion

Results of ELPLA using the finite element analysis along the wall height are compared with those obtained from the finite difference analysis by Naïmi (1957). Figure 2.34 shows the meridional moment M_{y}, Figure 2.35 shows the radial force N_{r} and Figure 2.36 shows the horizontal displacement V_{h}. These figures show that verification results of the available finite element analysis are in an good agreement with those of the finite difference analysis of Naïmi (1957).

2.12.4 Results by ELPLA

The input data and results of $E L P L A$ are presented on the next pages.

Figure 2.34 Meridional moment $M_{y}[\mathrm{MN} . \mathrm{m} / \mathrm{m}]$ with ring height.

Radial force $N_{r}[\mathrm{MN} / \mathrm{m}]$

Figure 2.35 Radial force $N_{r}[\mathrm{MN} / \mathrm{m}]$ with ring height.

Horizontal displacement $u[\mathrm{~cm}]$

Figure 2.36 Horizontal displacement $V_{x}[\mathrm{~cm}]$ with tank height.

Analysis of rotational shell

Boundary conditions

GEOTEC Software Inc POBox 14001 Richmond RoadPQ, Calgary AB, Canada BE 7Y7	
Scale 1:615	Titte: Berechnumg einer Ringmauer
File: Houchmand	Date: 18/11/2019
Page No.:	Project Houchmand (1957): Beitrage ar Anvendung dr Schal ethe ne bei Bogenstaumauem

ELPLA

Meridional moments My [MN.m/m]
त্ত
Max. $M y=29$ at node 10 , Min. $M y=-236$ at node 2
GEOTECSoftware Inc
POBox 14001 Richmond Ro ad PQ, Calgary AB, Canada BE 717

Scale 1:615	Title: Berechnumg einer Pingmaer

File: Huchmand

Date: 18/11/2019

Page No.:

ELPLA

Horizontal deformations Vh [cm]
0.00

Max. $V=3.03$ at node 14 , Min. $V=0.00$ at node 2

GEOTEC Software Inc	
POBox 14001 Richmond R ad PQ, Calgary AB, Canada T3E 7 Y 7	
Scale 1:700	Titte: Berechnung einer Ringmauer
File: Houchmand	Date: 18/11/2019
Page No.:	Project Houchmand (1957): Beitraege arr Anwendung dr Schal enthe nie bei Bogenstaumauem

2.13 Example 11: Tank covered with a spherical dome

2.13.1 Description of the problem

Numerical analysis for axi-symmetrically circular cylindrical tank covered with a spherical dome is presented by Melerski (2006) using a hybrid of displacement techniques based on finite element method. To verify analysis of cylindrical tank covered with a spherical dome, the internal forces calculated by Melerski (2006) are compared with those obtained by ELPLA using circular cylindrical shell elements.

Figure 2.37 shows half of an axial section of a large-diameter reinforced concrete circular cylindrical tank covered with a dome roof. The wall connection with the roof is monolithic, while the end of the wall is fixed at the base. Details concerning the geometry of the structure are as shown in Figure 2.37. The elastic properties of the tank material are shown in Table 2.10. Only the self-weight is considered in this analysis.

Figure 2.37 Radial section through the tank

Table 2.10 Tank material

Modulus of Elasticity of the tank material	E_{c}	$=3 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the tank material	v_{c}	$=0.16$	$[-]$
Unit weight of the tank material	γ_{c}	$=25$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

ELPLA

2.13.2 Numerical Analysis

In order to illustrate the comparison between the analysis of Melerski (2006) and that of ELPLA, the height of the wall is divided into 50 equal elements, each of 0.20 [m], while the roof shell (dome) is divided into 40 equal arcs each of $0.75\left[^{\circ}\right.$] as shown in Figure 2.38.

Figure 2.38 Finite element mesh of the tank

2.13.3 Results and discussions

The analysis of the considered tank is carried out by ELPLA, where the circular cylindrical wall and the spherical roof were simulated with a thin circular cylindrical shell element using the finite element method. Melerski (2006) analyzed the same tank by a finite element using a hybrid of displacement techniques.

Results of numerical analysis in the roof are compared with those of Melerski (2006). Figure 2.39 shows the tangential moment $M_{t}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$, Figure 2.40 shows the meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$, Figure 2.41 shows the radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$, Figure 2.42 shows the meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$, Figure 2.43 shows the horizontal displacement v_{h} [mm] and Figure 2.44 shows the vertical displacement $v_{v}[\mathrm{~mm}]$. These figures show that results of the available finite element analysis using circular cylindrical shell elements are in a good agreement with those of the numerical solution of Melerski (2006) by a finite element using a hybrid of displacement techniques. Table 2.11 shows a comparison between maximum internal forces obtained from the solution of Melerski (2006) and those obtained from ELPLA. The table shows that the error in the maximum values of tangential and meridional moments are 7.63%. The radial forces are more accurate with error of 1.39%, while that of the meridional forces are 1.67%. The horizontal displacements are in excellent accuracy with zero error, while the vertical displacements are less accurate with error of 6.40%.

Figure 2.39 Tangential moment M_{t} in the roof

Figure 2.40 Meridional moment M_{y} in the roof

Figure 2.41 Radial force N_{r} in the roof

Figure 2.42 Meridional force N_{y} in the roof

Figure 2.43
Horizontal displacement v_{h} in the roof

Figure 2.44 Vertical Displacement v_{v} in the roof

ELPLA

Table 2.11 Comparison between maximum internal forces obtained from Melerski (2006) solution by a finite element using a hybrid of displacement techniques and those obtained from ELPLA using circular cylindrical shell elements

Result	Type of analysis		Difference
	Melerski (2006)	ELPLA	
Maximum positive tangential moment M_{t}^{+}	$\begin{gathered} M_{t}^{+} \\ {[\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} M_{t}{ }^{+} \\ {[\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \Delta M_{t}{ }^{+} \\ {[\%]} \\ \hline \end{gathered}$
	2.31	2.20	4.76
Maximum negative tangential moment $M_{t}{ }^{-}$	$\begin{gathered} M_{t}^{-} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{t}^{-} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \Delta M_{t}{ }^{-} \\ {[\%]} \end{gathered}$
	-12.02	-11.10	7.63
Maximum positive radial force $N_{r}{ }^{+}$	$\begin{gathered} N_{r}{ }^{+} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} N_{r^{+}} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \hline \Delta N_{r}{ }^{+} \\ {[\%]} \end{gathered}$
	246	248.20	0.89
Maximum negative radial force $N_{r}{ }^{-}$	$\begin{gathered} N_{r^{-}} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} N_{r^{-}} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	ΔN_{r} [\%]
	-58.98	-59.80	1.39
Maximum meridional force N_{y}	N_{y} [kN / m]	N_{y} $[\mathrm{kN} / \mathrm{m}]$	ΔN_{y} [\%]
	-60	-61.10	1.83
Maximum positive horizontal displacement $v_{h}{ }^{+}$	$\begin{gathered} v_{h}{ }^{+} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} v_{h^{+}} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{aligned} & \Delta v_{h}{ }^{+} \\ & {[\%]} \end{aligned}$
	0.63	0.63	0
Maximum negative horizontal displacement $v^{-}{ }^{-}$	$\begin{gathered} v_{h}^{-} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} v_{h}^{-} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{aligned} & \Delta v_{h}^{-} \\ & {[\%]} \end{aligned}$
	-0.11	-0.11	0
Maximum vertical displacement v_{v}	$\begin{gathered} v_{v} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} v_{v} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \begin{array}{c} \Delta v_{v} \\ {[\%]} \end{array} \end{aligned}$
	1.71	1.82	6.40

2.14 Example 12: Tank resting on Winkler's medium

2.14.1 Description of the problem

Numerical and analytical analysis for axi-symmetrically circular cylindrical tank resting on elastic foundation using Winkler's model is presented by Vichare/ Inamdar (2010). To verify analysis of circular cylindrical tank resting on Winkler's medium, the internal forces calculated numerically and analytically by Vichare/ Inamdar (2010) at different cases of modulus of subgrade reaction are compared with those obtained by ELPLA.

A circular cylindrical tank of an inner diameter of $d=13[\mathrm{~m}]$ and a height of $H=3.5[\mathrm{~m}]$ is considered as shown in Figure 2.45. Thickness of the tank wall is $t=0.175$ [m]. The tank is filled with water. The soil under the base of the tank is represented by isolated springs of stiffness k_{s}, which represent modulus of subgrade reaction. The tank material, unit weight of the water and the modulus of subgrade reaction are listed in Table 2.12.

Figure 2.45 Circular cylindrical tank on isolated springs with dimensions
Table 2.12 Tank material, water unit weight and modulus of subgrade reaction

Modulus of Elasticity of the tank material	E_{c}	$=2 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the tank material	v_{c}	$=0.2$	$[-]$
Unit weight of the tank material	γ_{c}	$=25$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
Unit weight of the water	γ_{w}	$=10$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
Modulus of subgrade reaction	k_{s}	$=100000$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

2.14.2 Numerical Analysis

In order to illustrate the comparison between analytical and numerical analysis of Vichare/ Inamdar (2010) and that of ELPLA 9.4, the height of the tank is divided into 35 equal elements, each of $0.10[\mathrm{~m}]$, as shown in Figure 2.46. The base of the tank is divided into 50 equal elements, each of $0.13[\mathrm{~m}]$.

Figure 2.46 Finite element mesh of the tank

2.14.3 Results and discussions

The analysis of the considered tank is carried out numerically by ELPLA, where the tank wall and the base were simulated with a thin circular cylindrical shell element using finite element method. Vicharel Inamdar (2010) analyzed the same tank first numerically by ABAQUS 6.8 using three-dimensional finite element model, then analytically using equations of Timoshenkol Krieger (1959).

Figure 2.47, Figure 2.48 and Figure 2.49 show a comparison between results of the above analyses for meridional moment M_{y} along the wall height, radial force N_{r} along the wall height and the meridional moment across the base $M_{\text {base }}$ respectively. In these analyses, the modulus of subgrade reaction is chosen to be $k_{s}=100000\left[\mathrm{kN} / \mathrm{m}^{3}\right]$.

Table 2.13 shows a comparison between maximum internal forces obtained from analytical solution and those obtained from ELPLA, while Table 2.14 shows a comparison between maximum internal forces obtained from ABAQUS 6.8 and those obtained from ELPLA. From these figures and tables, it can be concluded for the considered tank and soil that the difference in values is not more than 5% which illustrates a good accuracy for the program used in this research.

Figure 2.47
Meridional moment M_{s} along the wall height

Figure 2.48 Radial force N_{r} along the wall height

Figure 2.49 Base meridional moment across the raft $M_{\text {base }}$
Table 2.13 Comparison between maximum internal forces obtained from analytical solution and those obtained from ELPLA

Result	Type of analysis		Difference
	Analytical	ELPLA	
Maximum meridional moment on the wall M_{y}	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{aligned} & \Delta M_{y} \\ & {[\%]} \\ & \hline \end{aligned}$
	3.95	3.90	1.27
Maximum radial force on the wall N_{r}	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{aligned} & \Delta N_{r} \\ & {[\%]} \end{aligned}$
	150.73	146.7	2.67
Maximum meridional moment on the base $M_{\text {base }}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \Delta M_{\text {base }} \\ {[\%]} \\ \hline \end{gathered}$
	-3.25	-3.1	4.62

Table 2.14 Comparison between maximum internal forces obtained from ABAQUS 6.8 and those obtained from ELPLA

Result	Type of analysis		Difference
	ABAQUS 6.8	ELPLA	
Maximum meridional moment on the wall M_{y}	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \Delta M_{y} \\ {[\%]} \\ \hline \end{gathered}$
	4.02	3.9	2.99
Maximum radial force on the wall N_{r}	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{aligned} & \Delta N_{r} \\ & {[\%]} \\ & \hline \end{aligned}$
	152.91	146.7	4.06
Maximum meridional moment on the base $M_{\text {base }}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \hline \Delta M_{\text {base }} \\ {[\%]} \\ \hline \end{gathered}$
	-3.31	-3.1	0.21

2.14.4 Conversion of the solution

To show the accuracy of the results of ELPLA for different moduli of subgrade reactions, the considered tank is analyzed again for different values of modulus of subgrade reaction k_{s} ranges from $20\left[\mathrm{MN} / \mathrm{m}^{3}\right]$ to $200\left[\mathrm{MN} / \mathrm{m}^{3}\right]$.

For this range of k_{s} values, Figure 2.50 shows the maximum meridional moment M_{y} in the wall, Figure 2.51 shows the maximum radial force in the wall and Figure 2.52 shows the maximum meridional moment in the base.

It is observed that with increasing k_{s} value, the maximum meridional moment and radial force decrease. For the base, it is observed that the variation of base moment with stiffness is marginal. A little difference in base moment occurred at stiff soil.

In general, the above comparison shows that the results of analyzing circular cylindrical tank on elastic foundation using Winkler's model are in a good agreement with those obtained analytically or numerically using three-dimensional finite element model.

Figure 2.50 Maximum meridional moment M_{y} along the wall with varying k_{s}

Figure 2.51 Maximum radial force N_{r} along the wall with varying k_{s}

Figure 2.52 Maximum meridional moment $M_{\text {base }}$ across the base raft with varying k_{s}

ELPLA

2.15 Example 13: Tank with conical base resting on Winkler's medium

2.15.1 Description of the problem

Numerical and analytical analysis for axi-symmetrically circular cylindrical tank with conical base resting on elastic foundation using Winkler's model is presented by EL Mezaini (2006). To verify analysis of circular cylindrical tank with conical base resting on Winkler's medium, the internal forces calculated analytically by EL Mezaini (2006) are compared with those obtained by ELPLA using circular cylindrical shell elements.

A circular cylindrical tank of an inner diameter of $d=15[\mathrm{~m}]$ and a height of $H=6[\mathrm{~m}]$ is considered as shown in Figure 2.53. Thickness of the tank wall is $t=0.5$ [m]. The tank is filled with water. The soil under the base of the tank is represented by isolated springs of stiffness k_{s}, which represent modulus of subgrade reaction. Figure 5.25 shows the tank with dimensions, while the tank material, unit weight of the water and the modulus of subgrade reaction are listed in Table 2.15.

Figure 2.53 Circular cylindrical tank on isolated springs with dimensions

Table 2.15 Tank material, water unit weight and modulus of subgrade reaction

Modulus of Elasticity of the tank material	E_{c}	$=2 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the tank material	v_{c}	$=0.2$	$[-]$
Unit weight of the tank material	γ_{c}	$=25$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
Unit weight of the water	γ_{w}	$=10$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
Modulus of subgrade reaction	k_{s}	$=100000$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

2.15.2 Numerical Analysis

In order to illustrate the comparison between numerical analysis of EL Mezaini (2006) and that of $E L P L A$, the height of the tank is divided into 20 equal elements, each of 0.30 [m], as shown in Figure 2.54 . The conical base of the tank is divided into 14 equal elements, each of 0.49 [m].

Figure 2.54 Finite element mesh of the tank

2.15.3 Results and discussions

The analysis of the considered tank is carried out numerically by $E L P L A$, where the circular cylindrical tank and the conical base were simulated with a thin circular cylindrical shell element using finite element method. EL Mezaini (2006) analyzed the same tank numerically by SAP 2000 [54] using three-dimensional finite element model.

Table 2.16 shows a comparison between maximum internal forces obtained from SAP 2000 and those obtained from ELPLA.

Figure 2.55, Figure 2.56 and Figure 2.57 show a comparison between results of the above analyses for meridional moment M_{y} along the wall height, radial force N_{r} along the wall height, the moment across the base raft $M_{\text {base }}$ and the base settlement $s_{\text {base }}$ respectively. In

ELPLA

these analyses, the modulus of subgrade reaction is chosen to be $k_{s}=100000[\mathrm{kN} / \mathrm{m}]$.
From these figures and tables, it can be concluded for the considered tank and soil that the difference in values is not more than 7% and that illustrates a good accuracy for the program used in this research.

Table 2.16 Comparison between maximum internal forces obtained from SAP 2000 and those obtained from ELPLA

Result	Type of analysis		Difference
	$S A P 2000$	$E L P L A$	
Maximum meridional moment on the wall M_{y}	M_{y}	M_{y}	ΔM_{y}
	$[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	$[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	$[\%]$
	24.30	23.80	2.06
Maximum radial force on the wall N_{r}	N_{r}	N_{r}	ΔN_{r}
	$[\mathrm{kN} / \mathrm{m}]$	$[\mathrm{kN} / \mathrm{m}]$	$[\%]$
	308.05	308.40	0.11
Maximum meridional moment on the base $M_{\text {base }}$	$M_{\text {base }}$	$M_{\text {base }}$	$\Delta M_{\text {base }}$
	$[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	$[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	$[\%]$
	-15.40	-14.90	3.25
Meridional moment at the edge of the base $M_{\text {base }}$	$M_{\text {base }}$	$M_{\text {base }}$	$\Delta M_{\text {base }}$
	$[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	$[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$	$[\%]$
	15.70	15.80	0.64
Settlement at the center $S_{\text {center }}$	$S_{\text {center }}$	$S_{\text {center }}$	$\Delta S_{\text {center }}$
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\%]$
	0.682	0.730	7.04
Settlement at the edge $S_{\text {edge }}$	$S_{\text {edge }}$	$S_{\text {edge }}$	$\Delta S_{\text {edge }}$
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\%]$
	1.148	1.196	4.18

Figure 2.55 Meridional moment M_{y} along the wall height

Figure 2.56 Radial force N_{r} along the wall height

Figure 2.57 Meridional moment across the conical base $M_{\text {base }}$
Distance from center $x[\mathrm{~m}]$

$$
\begin{array}{llllllllllllllll}
0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 & 5.5 & 6 & 6.5 & 7 & 7.5
\end{array}
$$

Figure 2.58 Conical base settlement $s_{\text {base }}$

2.16 Example 14: Tank resting on half space soil medium

2.16.1 Description of the problem

A differential quadrature solution for the flexure behavior of a circular cylindrical storage tank resting on an isotropic elastic half space soil medium is presented by Kukreti/ Siddiqi (1997). The interface between the base and the soil half space is considered to be perfectly smooth and continuous. The differential quadrature solution takes into account the interaction between the tank wall and the base using slope and moment compatibility. It also takes into account the interaction between the base and the soil medium using the contact pressure equation for the elastic half space. Kukreti/ Siddiqi (1997) verified their results with those of energy solution of the base by Kukreti (1992) and finite element model of Bookerl Small (1983).

To verify analysis of cylindrical storage tank resting on half space soil medium, results of the analysis using differential quadrature solution by Kukreti/ Siddiqi (1997), energy solution of the base plate by Kukreti (1992) and finite element model of Bookerl Small (1983) are compared with those obtained by the finite element analysis of ELPLA using circular cylindrical shell elements.

A circular cylindrical tank of an inner diameter of $d=18$ [m] and a height of $H=7.5[\mathrm{~m}]$ is considered as shown in Figure 2.59. The thickness of the tank wall and base is $t=0.36$ [m]. The tank is filled with water. Figure 2.45 shows the storage tank with dimensions, while the tank material and unit weight of the water are listed in Table 2.17. The data of soil medium under the base of the tank are shown in Table 2.18.

Isotropic elastic soil medium

$$
\begin{array}{ll}
E & =20000\left[\mathrm{kN} / \mathrm{m}^{2}\right] \\
v_{s} & =0.4 \quad[-]
\end{array}
$$

Figure 2.59 Circular cylindrical tank resting on an isotropic elastic soil medium

ELPLA

Table 2.17 Tank material and water unit weight

Modulus of Elasticity of the tank material	E_{c}	$=1.4 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the tank material	v_{c}	$=0.0$	$[-]$
Unit weight of the water	γ_{w}	$=9.81$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

Table 2.18 Soil data

Modulus of Elasticity of the soil medium	E	$=20000 \quad\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	
Poisson's ratio of the soil medium	v_{s}	$=0.4$	$[-]$

The unrealistic value $v_{c}=0.0$ was selected because this parameter has a little effect on the results obtained and because comparison was possible with the results of the differential quadrature solution of Kukreti/ Siddiqi (1997) and also with the results of the finite element model of Bookerl Small (1983).

2.16.2 Numerical Analysis

In order to illustrate the comparison between different methods for analyzing water storage tanks resting on an isotropic elastic half space soil medium and that of ELPLA, this numerical example is analyzed. Internal forces and base settlement calculated by ELPLA were compared with those of Kukreti/ Siddiqi (1997), Kukreti (1992) and Bookerl Small (1983). The height of the tank is divided into 30 equal elements, each of 0.25 [m], as shown in Figure 2.60. The base of the tank is divided into 45 equal elements, each of 0.2 [m].

Figure 2.60 Finite element mesh of the tank

2.16.3 Results and discussions

The analysis of the considered tank was carried out by $E L P L A$, where the circular cylindrical tank and the base were simulated with a thin circular cylindrical shell element using finite element method. Kukreti/ Siddiqi (1997) analyzed the same tank using the differential quadrature method, while Booker/ Small (1983) used a finite element model to simulate the same tank. Kukreti (1992) solved the same tank with the energy method.

Figure 2.61 shows that the contact pressure within about 67% of radius of the base is accurately predicted by the present analysis, with a maximum difference of less than 7% from the other methods in the comparison. The results obtained by the differential quadrature method are the nearest to results obtained by the analysis of this study. In addition, the general shape of the distribution in the remaining part of the base is similar. The numerical difference continues to increase toward the base edge, due the fact that half space soil medium predicts infinity pressure at the edge.

Figure 2.61 Variation of the contact pressure along the base
Differential deflection of the base with respect to the base -edge is shown in Figure 2.62. The maximum difference with the energy method of Kukreti (1992) is nearly 50%, with finite element solution of Booker/ Small (1983) is approximately 39% and with the differential quadrature method of Kukreti/ Siddiqi (1997) is less than 7%. However, the overall deflected shape of the plate remains the same and the difference in central differential deflection is nearly 6%.

Figure 2.62 Differential deflection of the base
The base moment and the tank wall meridional moment are shown in Figure 2.63 and Figure 2.64 , respectively. They are in close agreement with the finite element solution of Booker/ Small (1983). It is important to note that the differential quadrature method did not give any instability of solution in the outer quarter domain of the base, as it was experienced by the energy method reported by Kukreti (1992). Because high concentrations of moment often occur at the base center at the junction of the tank wall with the base the prediction of the central moment and the edge moment are of particular interest in structural analysis and design. The edge moment obtained from the present analysis is about 34.5% more than the value predicted if the tank wall were assumed to be fixed at the bottom. Thus, any analysis based on the assumption that the tank wall is fixed at the base will give unconservative results. This justifies the necessity of including the interaction between the base, the soil medium, and the tank wall in the analysis.

Figure 2.63 Meridional moment across the base raft $M_{\text {base }}$

Figure 2.64 Meridional moment M_{y} along the wall height

The tank wall radial force variations along the height of the tank are shown in Figure 2.65. The results are in close agreement for the upper three quarters of the tank height (the maximum difference is 3.16 \% with respect to the maximum magnitude of the force). In the differential quadrature method of Kukreti/ Siddiqi (1997) and the energy method of Kukreti (1992), the discrepancy in the value of the hoop tension near the base is due to the simplifying assumption made in this analysis that the base is infinitely stiff in the axial direction. The base, because of its assumed rigidity, does not allow the tank wall to displace radially at the base, making the value of the hoop force in the tank wall zero at this level. On the other hand; the finite element model of Booker/ Small (1983) and the analysis of this study give values of radial force and horizontal displacement at the base, because of taking in consideration the interaction between the wall and the base, and the interaction between the base and the soil.

Figure 2.65 Radial force N_{r} along the wall height
Table 2.19, Table 2.20 and Table 2.21 show a comparison between results obtained from ELPLA and those obtained from Kukreti/ Siddiqi (1997) solution, Bookerl Small (1983) solution and Kukreti (1992) solution, respectively.

From these figures and tables, it can be concluded for the considered tank and soil that the difference in values is not more than 10% and that illustrates a good accuracy for the program used in this research.

Table 2.19 Comparison between results obtained from differential quadrature solution of Kukreti/ Siddiqi (1997) and those obtained from ELPLA using circular cylindrical shell elements

Result	Type of analysis		Difference
	Differential quadrature method of Kukreti/ Siddiqi (1997)	ELPLA	
Contact pressure at the base center q	$\begin{gathered} q \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} q \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} \Delta q \\ {[\%]} \end{gathered}$
	74.05	73.60	0.61
Maximum meridional moment on the wall M_{y}	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} /} \\ \mathrm{m}] \end{gathered}$	$\begin{aligned} & \Delta M_{y} \\ & {[\%]} \end{aligned}$
	-71.16	-72.00	1.18
Maximum radial force on the wall N_{r}	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{aligned} & \Delta N_{r} \\ & {[\%]} \\ & \hline \end{aligned}$
	379.08	367.10	3.16
Maximum moment on the base $M_{\text {base }}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$M_{\text {base }}$ [kN.m/ $\mathrm{m}]$	$\begin{gathered} \Delta M_{\text {base }} \\ {[\%]} \end{gathered}$
	-73.94	-72.00	2.62
Differential deflection at the base center $\Delta s_{\text {base }}$	$\Delta s_{\text {base }}$ [mm]	$\Delta s_{\text {base }}$ [mm]	$\begin{gathered} \Delta\left(\Delta s_{\text {base }}\right) \\ {[\%]} \end{gathered}$
	-12.34	-13.05	5.75

ELPLA

Table 2.20 Comparison between results obtained from finite element solution of Booker/ Small (1983) and those obtained from ELPLA using circular cylindrical shell elements

Result	Type of analysis		Difference
	FEM of Booker/ Small (1983)	ELPLA	
Contact pressure at the base center q	$\begin{gathered} q \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} q \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} \Delta q \\ {[\%]} \end{gathered}$
	72.91	73.60	0.95
Maximum meridional moment on the wall M_{y}	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \hline M_{y} \\ {[\mathrm{kN} . \mathrm{m} /} \\ \mathrm{m}] \\ \hline \end{gathered}$	$\begin{aligned} & \Delta M_{y} \\ & {[\%]} \end{aligned}$
	-80.00	-72.00	10.00
Maximum radial force on the wall N_{r}	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \Delta N_{r} \\ {[\%]} \\ \hline \end{gathered}$
	369.38	367.10	0.62
Maximum moment on the base $M_{\text {base }}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$M_{\text {base }}$ [kN.m/ $\mathrm{m}]$	$\begin{gathered} \Delta M_{\text {base }} \\ {[\%]} \end{gathered}$
	-70.35	-72.00	2.35
Differential deflection at the base center $\Delta s_{\text {base }}$	$\Delta s_{\text {base }}$ [mm]	$\begin{gathered} \Delta s_{\text {base }} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \Delta\left(\Delta s_{\text {base }}\right) \\ {[\%]} \end{gathered}$
	-12.51	-13.05	4.32

Table 2.21 Comparison between results obtained from energy method of Kukreti (1992) and those obtained from ELPLA using circular cylindrical shell elements

Result	Type of analysis		Difference
	Energy method of Kukreti (1992)	ELPLA	
Contact pressure at the base center q	$\begin{gathered} q \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} q \\ {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \end{gathered}$	$\begin{gathered} \Delta q \\ {[\%]} \end{gathered}$
	72.91	73.60	0.95
Maximum meridional moment on the wall M_{y}	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{kN} . \mathrm{m} /} \\ \mathrm{m}] \\ \hline \end{gathered}$	$\begin{aligned} & \Delta M_{y} \\ & {[\%]} \end{aligned}$
	-71.16	-72.00	1.18
Maximum radial force on the wall N_{r}	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} N_{r} \\ {[\mathrm{kN} / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \Delta N_{r} \\ {[\%]} \end{gathered}$
	369.38	367.10	0.62
Maximum moment on the base $M_{\text {base }}$	$\begin{gathered} M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \hline M_{\text {base }} \\ {[\mathrm{kN} . \mathrm{m} /} \\ \mathrm{m}] \\ \hline \end{gathered}$	$\begin{gathered} \Delta M_{\text {base }} \\ {[\%]} \end{gathered}$
	-	-72.00	-
Differential deflection at the base center $\Delta s_{\text {base }}$	$\begin{aligned} & \Delta s_{\text {base }} \\ & {[\mathrm{mm}]} \end{aligned}$	$\begin{gathered} \Delta s_{\text {base }} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \Delta\left(\Delta s_{\text {base }}\right) \\ {[\%]} \\ \hline \end{gathered}$
	-12.34	-13.05	5.75

2.17 Example 15: Tank with different base thickness on half space soil medium

2.17.1 Description of the problem

A finite element analysis for the flexure behavior of a circular cylindrical storage tank resting on an isotropic elastic half space soil medium is presented by Melerski (2006). The solution takes into account the interaction between the tank wall and the base using slope and moment compatibility. It also takes into account the interaction between the base and the soil medium.

To verify analysis of circular cylindrical storage tank resting on half space soil medium, results of the analysis using finite element analysis of Melerski (2006) were compared with those obtained by the finite element analysis of ELPLA using circular cylindrical shell elements.

A circular cylindrical tank of an inner diameter of $d=20[\mathrm{~m}]$ and a height of $H=10[\mathrm{~m}]$ is considered as shown in Figure 2.66. Thicknesses of the wall and the base are different. The thickness of the tank wall $t_{w}=0.2[\mathrm{~m}]$ and that of the base is $t_{b}=0.5[\mathrm{~m}]$. The tank is filled with water. Figure 2.66 shows the storage tank, while the tank material and unit weight of the water are listed in 0 . The data of soil medium under the base of the tank are shown in Table 2.23.

Isotropic elastic soil medium

$$
\begin{array}{ll}
E & =20000\left[\mathrm{kN} / \mathrm{m}^{2}\right] \\
v_{s} & =0.2 \quad[-]
\end{array}
$$

Figure 2.66 Circular cylindrical tank resting on an isotropic elastic soil medium

Table 2.22 Tank material and water unit weight

Modulus of Elasticity of the tank material	E_{c}	$=2 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the tank material	v_{c}	$=0.16$	$[-]$
Unit weight of the tank material	γ_{c}	$=24$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
Unit weight of the water	γ_{w}	$=10.19$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

Table 2.23 Soil data

Modulus of Elasticity of the soil medium	E	$=20000$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the soil medium	v_{s}	$=0.2$	$[-]$

2.17.2 Numerical Analysis

In order to illustrate the comparison between analyzing water storage tanks resting on an isotropic elastic half space soil medium and that of $E L P L A$, this example shown in Figure 2.66 is analyzed. Internal forces and displacements calculated by $E L P L A$ were compared with those of Melerski (2006). The height of the tank is divided into 50 equal elements, each of 0.20 [m], as shown in Figure 2.67. The half base of the tank is divided into 50 equal elements, each of 0.20 [m].

Figure 2.67 Finite element mesh of the tank

2.17.3 Results and discussions

The analysis of the considered tank is carried out by ELPLA, where the circular cylindrical tank and the base were simulated with a thin circular cylindrical shell element using finite element method. Melerski (2006) analyzed the same tank by a finite element method.

The tank is analyzed under the following two load cases:
(a) Empty tank (self-weight only).
(b) Full tank (self-weight and liquid pressure).

The base settlement in the two cases of loading are shown in Figure 2.68. They are in close agreement with the finite element solution of Melerski (2006). For case (a), the difference at the center is about 13%, while at the edge the value is fewer than Melerski's result with nearly 10% difference. For case (b), the values are more compatible, where the value of settlement at the center is greater with approximately 2%, while at the edge the difference becomes 6%.

The base moment is shown in Figure 2.69. Because high concentrations of moment often occur at the base center and at the junction of the tank wall with the base, the prediction of the central moment and the edge moment are of particular interest in structural analysis and design. For case (a), the edge moment obtained from the present analysis is about 7% less than the value of Melerski (2006), while the value of the moment at the center equals zero. For case (b), the edge moment is fewer than the value of Melerski (2006) with about 6%, while the moment at the center is bigger with about 1.8%.

The wall meridional moment along the height of the tank is shown in Figure 2.70. For case (a), the moment at the wall-base junction is fewer than the value of Melerski (2006) with 1%. For case (b), the moment at the wall-base junction is bigger than the value of Melerski (2006), where the moment at the wall-base junction is not equal to the edge moment at the base for Melerski (2006) solution.

The tank wall radial force variations along the height of the tank is shown in Figure 2.71. The results are in close agreement with the finite element solution of Melerski (2006).

Figure 2.72 shows the horizontal displacement. It has the same diagrams as the radial force diagrams in the two cases of the analysis, where the horizontal displacement equal $v_{h}=N_{\theta} . a /$ $E t_{w}$.
where:
v_{h} Horizontal displacement, [m].
$N_{r} \quad$ Radial normal force in the wall, $[\mathrm{kN} / \mathrm{m}]$.
$a \quad$ Tank radius, [m].
E Young's modulus of elasticity, $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$.
$t_{w} \quad$ Wall thickness, [m].
From these figures, it can be concluded for the considered tank and soil that the model used in the analysis illustrates a good accuracy for the program used in this research.

Figure 2.68 Variation of settlement Sbase in the base plate

Figure 2.69 Variation of meridional moment $M_{\text {base }}$ in the base plate

Figure 2.70 Meridional moment M_{y} along the wall height

Figure 2.71 Radial force N_{r} along the wall height

Figure 2.72 Horizontal displacement v_{h} along the wall height

2.18 Example 16: Water container with a conical base

2.18.1 Description of the problem

A finite element method for analyzing rational shells is available in the reference Szilard et al. (1986). To verify ELPLA for analyzing shell structures, the internal forces obtained by Szilard et al. (1986) for analyzing cylindrical water container with a conical base are compared with those obtained by ELPLA.

A cylindrical water container with a conical base of a radius of $a=3.0[\mathrm{~m}]$ and a height of H $=12.0[\mathrm{~m}]$ is considered as shown in Figure 2.73. Thickness of the container wall is $0.3[\mathrm{~m}]$, while that for the conical base is 0.2 [m]. Figure 2.73 shows the container with dimensions and supports, while the container material and unit weight of the water are listed in Table 2.24 .

Table 2.24 Container material and water unit weight

Modulus of Elasticity of the container material	E_{c}	$=10000$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the container material	v_{c}	$=0.17$	$[-]$
Unit weight of the water	γ_{w}	$=10$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

Figure 2.73 Cylindrical water container with dimensions and supports

2.18.2 Numerical Analysis

In the analysis, the height of the tank is divided into two main segments, the first one is divided into 30 elements (30×0.3 [m]), while the second is divided into 20 elements (20×0.15 [m]) as shown in Figure 2.74.

Figure 2.74 Finite element mesh of the container with boundary condition

2.18.3 Results and discussion

Results of ELPLA at segment ends are compared with those obtained by Szilard et al. (1986) in Table 2.25 to Table 2.27. These Tables show that results of $E L P L A$ are in a good agreement with those of Szilard et al. (1986). Figure 2.75 to Figure 2.77 show the internal forces obtained by ELPLA along the wall height.

Table 2.25 Comparison between radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by $E L P L A$ at segment ends

Segment No.	Edge	Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$		Absolute difference $[\mathrm{kN} / \mathrm{m}]$
		Szilard et al. (1986)	$E L P L A$	0.0029
1	Start node	1.6767	1.6738	0.2052
	End node	-25.8878	-26.0930	0.3435
2	Start nod	9.0979	9.4414	1.4281
	End node	8.1024	9.5305	0

Table 2.26 Comparison between meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends

Segment No.	Edge	Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$		Absolute difference $[\mathrm{kN} / \mathrm{m}]$
		Szilard et al. (1986)	$E L P L A$	0.0135
1	Start node	-0.7139	-0.7274	0.0800
	End node	-3.8136	-3.8936	0.0136
2	Start nod	155.2807	155.2671	0.0933
	End node	14.1626	14.0693	0

Table 2.27 Comparison between meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends

Segment No.	Edge	Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$		Absolute difference $[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$
		Szilard et al. (1986)	$E L P L A$	0.0000
1	Start node	-0.0141	-0.0141	0.0038
	End node	-14.6691	-14.6653	0.0028
2	Start nod	-15.9102	-15.9074	0.1544
	End node	-0.6238	-0.7782	0

Figure 2.75 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with wall height.

Figure 2.76 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with wall height.

Figure 2.77 Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ with wall height.
Analysis of rotational shell

Figure 2.78 "Analysis of rotational shell" wizard

ELPLA

Figure 2.79 "Conical shell" form

Verification Examples

Figure 2.80 "Irregular shell" form

ELPLA

Figure 2.81 "Irregular shell" form

Figure 2.82 "FE-Net Data" window after generating the net

Figure 2.83 "Cartesian Grid" form

Figure 2.84 "FE-Net Data" window

2.19 Example 17: Hyperbolic shell under different loads

2.19.1 Description of the problem

A finite element method for analyzing rational shells is available in the reference Szilard et al. (1986). To verify ELPLA for analyzing shell structures, the internal forces obtained by Szilard et al. (1986) for analyzing hyperbolic shell under different loads are compared with those obtained by ELPLA.

Consider a hyperbolic shell of revolution with the following geometry:

Throat radius
Throat height
Lower radius
Total height
Thickness of the wall

$$
\begin{array}{lll}
R_{o} & =18 & {[\mathrm{~m}]} \\
H_{l} & =45 & {[\mathrm{~m}]} \\
R_{u} & =36 & {[\mathrm{~m}]} \\
H & =72 & {[\mathrm{~m}]} \\
t & =0.24 & {[\mathrm{~m}]}
\end{array}
$$

Meridian equation of the hyperbolic shell of revolution is given by:

$$
\begin{aligned}
& r^{2}(\xi)=\frac{R_{u}^{2}-R_{o}^{2}}{H_{l}^{2}}\left(\xi-H_{l}\right)^{2}+R_{o}^{2} \\
& r^{2}(\xi)=\frac{36^{2}-18^{2}}{45^{2}}(\xi-45)^{2}+18^{2} \\
& r^{2}(\xi)=0.48(\xi-45)^{2}+324
\end{aligned}
$$

where $r[\mathrm{~m}]$ is the radius at height $\xi[\mathrm{m}]$.
Figure 2.85 shows the geometry of the hyperbolic shell with dimensions and supports, while the shell material are listed in Table 2.28.

Table 2.28 hyperboloid shell material

Modulus of Elasticity of the shell material	E_{c}	$=3 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the shell material	v_{c}	$=0.3$	$[-]$

Figure 2.85 Geometry of the hyperbolic shell with dimensions and supports

2.19.2 Numerical Analysis

In the analysis, the height of the hyperbolic shell is divided into 7 main segments; each segment is divided into a number of elements. Segment dimensions and number of elements of each segment are shown in Figure 2.86.

Figure 2.86 Segment dimensions and no. of elements in each segment

ELPLA

Internal forces are determined for the following load cases:

1. Self-weight of $g=6.0\left[\mathrm{kN} / \mathrm{m}^{2}\right]$, Figure 2.87 .

Figure 2.87 Shell with self-weight of $g=6.0\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
2. Uniform external pressure of $p_{s}=-10\left[\mathrm{kN} / \mathrm{m}^{2}\right]$, Figure 2.88.

Figure 2.88 Shell with uniform external pressure of $p_{s}=-10\left[\mathrm{kN} / \mathrm{m}^{2}\right]$

ELPLA

3. Horizontal line load of $H_{o}=-100[\mathrm{kN} / \mathrm{m}]$ at the top edge of the shell, Figure 2.89.

Figure 2.89 Shell with a horizontal line load of $H_{o}=-100[\mathrm{kN} / \mathrm{m}]$

2.19.3 Results and discussion

Results of ELPLA at segment ends for the three load of cases are compared with those obtained by Szilard et al. (1986) in Table 2.29 to Table 2.37. These Tables show that results of ELPLA are in a good agreement with those of Szilard et al. (1986). Figure 2.90 to Figure 2.98 show the internal forces obtained by $E L P L A$ along the wall height.

Table 2.29 Comparison between radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by $E L P L A$ at segment ends. Load case 1.

Segment No.	Edge	Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$		Absolute difference [kN / m]
		Szilard et al. (1986)	ELPLA	
1	Start node	69.5724	69.5128	0.0596
	End node	0.5222	0.5287	-0.0065
2	Start node	-0.7700	-0.6579	-0.1121
	End node	-124.8571	-124.9916	0.1345
3	Start node	-125.8401	-126.0563	0.2162
	End node	-253.4129	-253.7656	0.3527
4	Start node	-254.4527	-254.8056	0.3529
	End node	-325.5648	-326.7562	1.1914
5	Start node	-328.2926	-329.0705	0.7779
	End node	-304.1353	-304.1556	0.0203
6	Start node	-305.9570	-305.8356	-0.1214
	End node	-240.7215	-241.4881	0.7666
7	Start nod	-241.9167	-242.4401	0.5234
	End node	-105.0295	-105.1321	0.1026

ELPLA

Table 2.30 Comparison between meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 1.

Segment No.	Edge	Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$		Absolute difference $[\mathrm{kN} / \mathrm{m}]$
		Szilard et al. (1986)	ELPLA	-1.7369
1	Start node	-1.9396	0.2027	
	End node	-68.0595	-68.0932	0.0337
	Start node	-72.3711	-72.0512	0.3199
	End node	-139.5230	-139.2727	0.2503
3	Start node	-142.7999	-142.8207	0.0208
	End node	-202.3444	-202.4391	0.0947
	Start node	-205.8094	-205.9064	0.0970
	End node	-250.8448	-250.9825	0.1377
5	Start node	-259.9382	-258.6959	1.2423
	End node	-294.5903	-294.0234	0.5669
	Start node	-300.6625	-299.6241	1.0384
	End node	-325.4098	-325.1789	0.2309
7	Start nod	-329.3937	-328.3519	1.0418
	End node	-350.0983	-350.4408	0.3425

Table 2.31 Comparison between meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 1.

Segment No.	Edge	Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$		Absolute difference [kN.m/m]
		Szilard et al. (1986)	ELPLA	
1	Start node	-0.0009	-0.0011	0.0002
	End node	-3.1189	-3.1769	0.058
2	Start node	-2.9919	-3.0427	0.0508
	End node	-8.2363	-8.4232	0.1869
3	Start node	-8.4294	-8.4532	0.0238
	End node	-13.8129	-13.8321	0.0192
4	Start node	-14.0145	-14.0349	0.0204
	End node	-16.1447	-16.2391	0.0944
5	Start node	-15.0779	-15.514	0.4361
	End node	-12.3262	-12.6665	0.3403
6	Start node	-12.5098	-12.8408	0.331
	End node	-7.6055	-7.8502	0.2447
7	Start nod	-7.7253	-8.108	0.3827
	End node	-0.1248	-0.1125	0.0123

ELPLA

Table 2.32 Comparison between radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 2.

Segment No.	Edge	Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$		Absolute difference [kN/m]
		Szilard et al. (1986)	ELPLA	
1	Start node	-283.9419	-283.7302	0.2117
	End node	-201.7216	-201.7328	0.0112
2	Start node	-201.1569	-201.2161	0.0592
	End node	-107.0932	-107.0177	0.0755
3	Start node	-106.9399	-106.7979	0.1420
	End node	-59.5957	-59.4365	0.1592
4	Start node	-59.5928	-59.4335	0.1593
	End node	-97.5923	-97.2183	0.3740
5	Start node	-97.3619	-97.0933	0.2686
	End node	-225.6020	-225.7137	0.1117
6	Start node	-226.3025	-226.357	0.0545
	End node	-344.9325	-345.0061	0.0736
7	Start nod	-346.0169	-345.9579	0.0590
	End node	-20.2175	-21.1818	0.9643

Table 2.33 Comparison between meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 2.

Segment No.	Edge	Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$		Absolute difference [kN/m]
		Szilard et al. (1986)	ELPLA	
1	Start node	1.0249	0.9315	0.0934
	End node	46.8933	46.8819	0.0114
2	Start node	48.7761	48.6042	0.1719
	End node	84.5652	84.3615	0.2037
3	Start node	85.0767	85.0936	0.0169
	End node	99.1026	99.1436	0.041
4	Start node	99.1117	99.1535	0.0418
	End node	85.3395	85.3722	0.0327
5	Start node	86.1077	85.789	0.3187
	End node	33.8953	33.6757	0.2196
6	Start node	31.5603	31.5315	0.0288
	End node	-32.3984	-32.5001	0.1017
7	Start nod	-36.0127	-35.6723	0.3404
	End node	-67.3916	-70.6063	3.2147

ELPLA

Table 2.34 Comparison between meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 2.

Segment No.	Edge	Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$		$\begin{array}{c}\text { Absolute } \\ \text { difference }\end{array}$

ELPLA\end{array}\right]\)

Table 2.35 Comparison between radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 3.

Segment No.	Edge	Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$		Absolute difference [kN/ m]
		Szilard et al. (1986)	ELPLA	
1	Start node	-2498.3086	-2506.92	8.6114
	End node	-6.1263	-6.1498	0.0235
2	Start node	-5.7148	-5.7743	0.0595
	End node	0.0550	0.0537	0.0013
3	Start node	0.0611	0.0594	0.0017
	End node	0.0047	0.0028	0.0019
4	Start node	0.0047	0.0028	0.0019
	End node	0.0039	0.0022	0.0017
5	Start node	0.0040	0.0022	0.0018
	End node	0.0024	0.0013	0.0011
6	Start node	0.0024	0.0013	0.0011
	End node	0.0011	0.0006	0.0005
7	Start nod	0.0011	0.0006	0.0005
	End node	0.0006	0.0003	0.0003

ELPLA

Table 2.36 Comparison between meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 3.

Segment No.	Edge	Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$		Absolute difference [kN / m]
		Szilard et al. (1986)	ELPLA	
1	Start node	-132.8555	-124.6019	8.2536
	End node	-1.2323	-1.1253	0.107
2	Start node	0.1393	0.1263	0.013
	End node	-0.0096	-0.0099	0.0003
3	Start node	0.0107	0.0092	0.0015
	End node	0.0034	0.0019	0.0015
4	Start node	0.0035	0.0019	0.0016
	End node	0.0033	0.0018	0.0015
5	Start node	0.0034	0.0019	0.0015
	End node	0.0029	0.0016	0.0013
6	Start node	0.0029	0.0016	0.0013
	End node	0.0024	0.0013	0.0011
7	Start nod	0.0024	0.0013	0.0011
	End node	0.0020	0.0011	0.0009

Table 2.37 Comparison between meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ obtained by Szilard et al. (1986) and those obtained by ELPLA at segment ends. Load case 3.

Segment No.	Edge	Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$		Absolute difference [kN.m/ m]
		Szilard et al. (1986)	ELPLA	
1	Start node	10.5182	9.664	0.8542
	End node	-1.4044	-1.3918	0.0126
2	Start node	-1.0173	-1.0361	0.0188
	End node	-0.0059	-0.006	0.0001
3	Start node	-0.0054	-0.0055	1E-04
	End node	0.0002	0.0001	0.0001
4	Start node	0.0002	0.0001	0.0001
	End node	0.0002	0.0001	0.0001
5	Start node	0.0002	0.0001	0.0001
	End node	0.0001	0.0001	0
6	Start node	0.0001	0.0001	0
	End node	0.0001	0	0.0001
7	Start nod	0.0001	0	0.0001
	End node	0.0000	0	0

Figure 2.90 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with shell height. Load case 1

Figure 2.91 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with shell height. Load case 1

Figure 2.92 Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ with shell height. Load case 1

Figure 2.93 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with shell height. Load case 2

Figure 2.94 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with shell height. Load case 2

Figure 2.95 Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ with shell height. Load case 2

Meridionaler Moment My [kN.m/m]
Figure 2.96 Meridional moment $M_{y}[\mathrm{kN} . \mathrm{m} / \mathrm{m}]$ with shell height. Load case 3

Figure 2.97 Radial force $N_{r}[\mathrm{kN} / \mathrm{m}]$ with shell height. Load case 3

Figure 2.98 Meridional force $N_{y}[\mathrm{kN} / \mathrm{m}]$ with shell height. Load case 3

2.20 Example 18: A Silo filled with cement

2.20.1 Description of the problem

Analysis and design of silos using finite element method is available in the reference Mansour (2018). To verify $E L P L A$ for analyzing silos for storing granular materials, the hoop tension obtained by Mansour (2018) for analyzing a silo filled with cement is compared with that obtained by ELPLA.

A circular concrete silo having a conical hopper at the bottom part and a conical roof at the upper part is considered. The main height of the silo is $8[\mathrm{~m}]$ and its diameter is $4[\mathrm{~m}]$. The stored material is cement of a unit weight of $15.5\left[\mathrm{kN} / \mathrm{m}^{2}\right]$. The angle of internal friction of cement is $25\left[^{\circ}\right]$ and the angle of wall friction is $25\left[^{\circ}\right]$. The thickness of the roof and the wall is 0.28 [m], while the thickness of the hopper is 0.25 [m]. The conical hopper bottom slope is 45 [${ }^{\circ}$], opening at the bottom is $0.5[\mathrm{~m}]$ and hopper bottom height is 3 [m$]$. Figure 2.85 shows the geometry of the silo with dimensions and support, while the silo shell material is listed in Table 2.38.

Figure 2.99 Geometry of the silo with dimensions and support

Table 2.38 Silo shell material

Modulus of Elasticity of the shell material	E_{c}	$=2.486 \times 10^{7}$	$\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Poisson's ratio of the shell material	v_{c}	$=0.2$	$[-]$
Unit weight of the shell material	γ_{c}	$=23.563$	$\left[\mathrm{kN} / \mathrm{m}^{3}\right]$

2.20.2 Pressure on the silo wall

According to Janssen's silo theory (1895), the horizontal pressure $P_{h}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ on the silo wall at a depth $h[\mathrm{~m}]$ below the free surface of the stored material is given by:

$$
P_{h}=\frac{\gamma_{s} R}{\mu}\left[1-\operatorname{Exp}\left(\frac{-\mu k h}{R}\right)\right]
$$

in which k is the ratio of horizontal to vertical pressures, usually assumed equal to Rankine's coefficient of active earth pressure

$$
k=\frac{1-\sin \varphi}{1+\sin \varphi}
$$

h	Depth from the material top to the calculation section, $[\mathrm{m}]$
k	Wall pressure coefficient, $[-]$
φ	Angel of internal friction of the stored material, $\left[{ }^{\circ}\right]$
γ_{s}	Unit weight of the stored material, $\left[\mathrm{kN} / \mathrm{m}^{3}\right]$
$R=A / U$	Hydraulic radius of the net horizontal cross section, $[\mathrm{m}]$
$\mu=\tan \delta$	Friction coefficient between the silo wall and the stored material
δ	Angle of the wall friction, $\left[{ }^{\circ}\right]$
$A=\pi D^{2} / 4$	Cross-sectional area of the silo, $\left[\mathrm{m}^{2}\right]$
$U=\pi D$	Parameter of the silo, $[\mathrm{m}]$
D	Diameter of the silo, $[\mathrm{m}]$

Using the above relations and equations, the lateral pressure P_{h} on the main silo wall various depth is determined and presented in Table 2.39.

Table 2.39 Lateral pressure P_{h} on the main silo wall

Height from the top $h[\mathrm{~m}]$	Lateral pressure on the silo wall $P_{h}[\mathrm{kN} / \mathrm{m} 2]$
1	5.731
2	10.475
3	14.400
4	17.648
5	20.337
6	22.562
7	24.403
8	25.926

2.20.3 Numerical Analysis

The wall of the silo is divided into three parts:

1. The roof part where no lateral pressure is applied on it
2. The main silo part where the lateral pressure p_{h} is applied.
3. The hopper part where no lateral pressure is applied on it

In the analysis, these three parts are divided into 14 segments; each segment is 1.0 [m$]$. Then these segments are divided into a number of elements, each element is 0.2 [m]. Segment dimensions and number of segments are shown in Figure 2.100.

Figure 2.100 Segment dimensions

2.20.4 Results and discussion

Table 2.29Figure 2.101 shows the redial force obtained by ELPLA. The maximum redial force obtained by ELPLA is $N r=48.4[\mathrm{kN} / \mathrm{m}]$, while that of Mansour (2018) is $N r=51.3[\mathrm{kN} / \mathrm{m}]$. They are in a good agreement.

Figure 2.101 Redial force $\mathrm{Nr}[\mathrm{kN} / \mathrm{m}]$

2.21 References

[1] Ahrens, H. and Winselmann, D. (1984): "Eine iterative Berechnung von Flächengründungen nach dem Steifemodulverfahren". Finite Elemente Anwendungen in der Baupraxis Verlag W. Ernst \& Sohn, München.
[2] Bakhoum, M. (1992): "Structural Mechanics". Cairo, Egypt.
[3] Booker, J. R. and Small, J. C. (1983): "The analysis of liquid storage tanks on deep elastic foundation". Int. J. Numer. Anal. Methods Geomech. 7, 187-207.
[4] Borowicka, H. (1939): Druckverteilung unter elastischen Platten, Ingenieur-Archiv, Band 10, S. 113-125.
[5] Das, B. M. (1997): "Advanced soil mechanics", 2nd ed., USA, Tailor \& Francis.
[6] El Gendy M. and El Gendy A. (2015): "Analysis and Design of Slab Foundations by FE-Method- Program ELPLA 10". GEOTEC Software Inc., Canada.
[7] El Gendy, M. (2003): "Numerical Modeling of Rigid Circular Rafts on Consolidated Clay Deposits". Int. Workshop on Geotechnics of Soft Soils-Theory and Practice. Vermeer, Schweiger, Karstunen \& Cudny (eds.).
[8] El Gendy, M. (2006): "Developing stress coefficients for raft-deformation on a thick clay layer". Vol. 41, No. 3, September 2006, pp. 73-108. Scientific Bulletin, Faculty of Engineering, Ain Shams University, Cairo, Egypt.
[9] El Gendy, O. (2016): "Behavior of Tanks under Static and Cyclic Loading". MSc Thesis, Port Said University.
[10] EL Mezaini, N. (2006): "Effects of soil-structure interaction on the analysis of cylindrical tanks". Practice periodical on structural design and construction, Vol. 11, No. 01, Pages 50-57.
[11] Ghali, A. (2000): "Circular storage tanks and silos $-2^{\text {nd }}$ edition", by E \& FN spon - 11 New Fetter Lane, London EC4P 4EE.
[12] Godbout, S./ Marquis, A./ Fafard, M./ Picard, A. (2003): Analytical determination of internal forces in a cylindrical tank wall from soil, liquid, and vehicle loads, Canadian Biosystems Engineering/Le géniedes biosystèmes au Canada 45: 5.7-5.14.
[13] Grafton, P. E. and Strome, D. R. (1963): "Analysis of Axis-Symmetric Shells by the Direct Stiffness Method," AIAA Journal, Vol. 1, No. 10, pp. 2342-2347.
[14] Graßhoff, H. (1955): "Setzungsberechnungen starrer Fundamente mit Hilfe des kennzeichnenden Punktes". Der Bauingenieur, S. 53-54.
[15] Hauso, A. (2014): "Analysis methods for thin concrete shells of revolution", M.Sc. Thesis, Faculty of Engineering, Norwegian University of Science and Technology.
[16] Hemsley, J. A. (1998): "Elastic analysis of raft foundations", Thomas Telford Ltd, 1 Heron Quay, London.
[17] Hibbitt, Karlsson and Sorenson (2008): "ABAQUS 6.8: A computer software for finite element analysis", Hibbitt, Karlsson and Sorenson Inc., Rhode Island, USA.
[18] Houchmand Naïmi (1957): Beiträge zur Anwendung der Schalentheorie bei Bogenstaumauern, Promotionsarbeit, Eidgenössischen Technischen, Hochschule in Zürich.
[19] Janssen, H. A. (1895): "Versuche über Getreidedruck in Silozellen". VDI, Zeitschrift, Düsseldorf, Band 39, Aug. 31, 1885, S. 1045-1049.
[20] Kany, M. (1974): "Berechnung von Flächengründungen", 2. Auflage Verlag Ernst \& Sohn, Berlin.
[21] Kany, M., El Gendy M. and El Gendy A. (2008): "Analysis and Design of Slab Foundations by FE-Method- Program ELPLA 9.2". GEOTEC Software, Zirndorf, Germany.
[22] Karaşin, H./ Gülkan, P./ Aktas, G. (2014): A Finite Grid Solution for Circular Plates on Elastic Foundations, KSCE Journal of Civil Engineering (2015) 19(4):1157-1163.
[23] Kukreti, A. \& Siddiqi, Z. (1997): "Analysis of fluid storage tanks including foundationsuperstructure interaction using differential quadrature method". Appl. Math. Modeling 1997, 21:193-205, April.
[24] Kukreti, A., Zaman, M. and Issa, A. (1993): "Analysis of fluid storage tanks including foundation-superstructure interaction". Appl. Math. Modelling 1993, Vol. 17, December.
[25] Mathworld.wolfram.com
[26] Mansour, I. (2018): "Analysis and Design of Silos Using Finite Elements". M.Sc., Sudan University of Science and Technology
[27] Melerski, E. S. (1991), "Simple elastic analysis of axisymmetric cylindrical storage tanks", Journal of Structural Engineering, Vol. 117, No. 11, Pages 3239-3260.
[28] Melerski, E. (2006): "Design analysis of beams, circular plates and cylindrical tanks on elastic foundations $-2^{\text {nd }}$ edition". Taylor \& Francis group, London, UK.
[29] Mistríková, Z \& Jendželovský, N (2012): "Static analysis of the cylindrical tank resting on various types of subsoil", Journal of civil engineering and management, Vol. 18(5): 744-751.
[30] Mobarak, W. (2010): "Effect of Tie Girders on Piled Footing in Port Said", M.Sc. Thesis, Faculty of Engineering, Suez Canal University.
[31] Nishida, Y. (1956): "A brief note on compression index of soils". Journal of SMFE Div., ASCE, July, p 1027 (1-14).
[32] Ohde, J. (1942): "Die Berechnung der Sohldruckverteilung unter Gründungskörpern Der Bauingenieur". Heft 14/16, S. 99-107 - Heft 17/18 S. 122-127.
[33] Percy, J. H., Pian, T. H. H., Klein, S., and Navaratna, D. R. (1965): "Application of matrix displacement method to linear elastic analysis of shells of revolution." AIAA Journal, Vol. 3, No. 11, pp. 2138-2145.
[34] Reda, A. (2009): "Optimization of Reinforced Concrete Piled Raft", M.Sc. Thesis, Faculty of Engineering, Suez Canal University.
[35] Rockey, K. C., Evans, H. R., Griffiths, D. W. and Nethercot, D. A. (1975): "The Finite Element Method- A Basic Introduction for Engineers", by Crospy Lockwood Staples, London.
[36] Samangany, A.Y., Naderi R., Talebpur M. H. and Shahabi H. (2013): "Static and Dynamic Analysis of Storage Tanks Considering Soil-Structure Interaction", International Research Journal of Applied and Basic Sciences, Vol. 6(4), 515-532.
[37] Szilard, R., Ziesing and Pickhardt (1986): "Basic- Programme für Baumechanik und Statik". Wilhelm Ernst und Sohn Verlag für Architektur und technische Wissenschaften, Berlin.
[38] Terzaghi, K., Peck, R.B. and Mesri, Gh. (1996), "Soil mechanics in engineering practice", 3rd Ed., John Wiley, New York.
[39] Timoshenko, S. \& Woinowsky-Krieger S. (1959): "Theory of plates and shells". McGraw- Hill Book Co. Singapore.
[40] Utku, M., and Inceleme, I. (2000): The Analysis of the Stability of General Slip Surfaces, Geotechnique, 15(1): 79-93.
[41] Ventsel, E. and Krauthammer, T. (2001): "Thin Plates and Shells: Theory, Analysis and Applications". Marcel Dekker, INC., New York.
[42] Vichare, S. \& Inamdar, M. (2010): "An analytical solution for cylindrical concrete tank on deformable soil", International journal of advanced structural engineering, Vol. 2, No. 1, Pages 71-93, Islamic Azad university, south Tehran branch.
[43] Winkler, E. (1867): " Die Lehre von der Elastizität und Festigkeit". Dominicus, Prag.
[44] www.wolframalpha.com/entities/plane_curves.
[45] Zaman, M. and Koragappa, N. (1989): "Analysis of tank-foundation-half-space interaction using an energy approach". Appl. Math. Modelling, Vol. 13, February.
[46] Zienkiewicz, O. C. and Cheung, Y. K. (1965): "Plates and Tanks on Elastic Foundations - an Application of Finite Element Method". International Journal of Solids Structures Vol. 1, pp. 451-461, Pergamon.
[47] Zienkiewicz, O. C. and Cheung, Y. K. (1967): "The Finite Element Method in Structural and Continuum Mechanics". Berkshire, England, by McGraw-Hill Publishing Company Limited.
[48] Zienkiewicz, O. C. and Taylor, R. L. (1967): "The Finite Element Method - Vol. 2: Solid Mechanics". Berkshire, England, by McGraw-Hill Publishing Company Limited.
[49] Zingoni, A. (1997): "Shell Structures in Civil and Mechanical Engineering". Thomas Telford publisher, Thomas Telford services Ltd, 1 Heron Quay, London E14 4JD

