Analyzing Axisymmetric Structures and Tanks by the Program *ELPLA*

O. El Gendy Y. El Gendy M. El Gendy

Copyright © GEOTEC Software Inc. PO Box 14001 Richmond Road PO, Calgary AB, Canada T3E 7Y7 Tele.:+1(587) 332-3323 geotec@geotecsoftware.com www.geotecsoftware.com

Contents

1.	Introduction	. 4
2.	Starting <i>ELPLA</i>	. 4
3.	Toolbar Buttons and Keyboard Shortcuts	. 6
4.	Description of the examples	10

1. Introduction

This Tutorial Manual contains an overview of dealing with analyzing circular cylindrical shells structures. It is also considered, circular cylindrical tank resting on layered soil as one unit taking into account the soil-structure interaction effect. It describes the processes of modeling the problems, carrying out the analyses, viewing and printing the results. It provides the user skills, which he needs to use *ELPLA*. It also takes the user gradually through some simple examples. Carrying out these examples will help the user to become familiar with the most important functions of *ELPLA* for analyzing shell structures. Before attempting a real project with *ELPLA*, it is recommended that the user tries to carry out the given problems.

This Tutorial Manual will not present the theoretical background of modeling the problems. For more information concerning the methods of analysis, a complete reference for calculation methods and numerical models is well documented in the books:

- 1- Analysis of Axisymmetric Structures and Tanks by the Program *ELPLA*, Part I: Numerical models
- 2- Analysis of Axisymmetric Structures and Tanks by the Program *ELPLA*, Part II: Verification Examples

In addition, a complete reference for all menus and dialog boxes of the program is to be found in the User's Guide or in the online help system.

ELPLA General Features

ELPLA general features are common features that may be repeated under different menus or command groups. They are listed in *ELPLA* user's guide. Common features are similar those of Windows CAD and Rendering programs. If you are familiar with Windows CAD and Rendering programs, you can certainly get a head start from Tutorial Examples.

2. Starting *ELPLA*

After installing *ELPLA*, a new program group and program items will be created automatically for *ELPLA* in the Windows-Start-Menu. In addition, a program icon will be created on the Windows desktop. The usage of the program is typically such that first data files are created describing a certain problem through the "Data" Tab. Then the project problem is analyzed by calculation commands through "Solver" Tab. Finally, results can be presented as graphical drawings, graphs and tables through "Result" Tab. Names and short descriptions of the function of the main program Tabs are given in Table 1.

Table 1	Names and descriptions of ELPLA Tabs
Tab name	Description of the tab function
"Data" Tab	Editing project data
"Solver" Tab	Analyzing the project problem
"Result" Tab	Displaying data and results graphically, listing project data and calculated results, displaying results in diagrams at specified sections and displaying boring logs graphically
"Setting" Tab	Setting options, formats, main data of ELPLA
"View" Tab	Appearance or disappearance "Tree View" and "Status bar"

Start the *ELPLA* by double clicking on its icon on the Windows desktop. After starting *ELPLA* for the first time, the window in Figure 1 appears.

Figure 1 Main window of *ELPLA*

In the following section, the user will find a brief description of some of the essential interface commands. This section will help the user to be familiar with some of the commands, which will be used in this Tutorial.

3. Toolbar Buttons and Keyboard Shortcuts

Many of *ELPLA* commands can be accessed by clicking buttons on the toolbars, or by pressing shortcut keys on the keyboard. When you select a menu, the available toolbar buttons and keyboard shortcuts for that menu are shown next to their corresponding commands as shown in Figure 2. You can also directly see what command is associated with a toolbar button by holding the mouse cursor over the button. After a brief pause a legend (Screen Tip) will appear next to the cursor showing the menu command associated with the button.

- E -		
	<u>N</u> ew Project	
Ê	<u>O</u> pen Project	
H	Save Project <u>A</u> s	
8	Export Building Components	
Q	File <u>L</u> ist	
	<u>C</u> lose Project	
G	Make <u>W</u> MF-File	
.	<u>S</u> end to	Þ
	<u>P</u> rint	Þ
	Page Set <u>u</u> p	
?	<u>H</u> elp	F
×	E <u>x</u> it	

Figure 2 Available toolbar buttons and keyboard shortcuts for the file menu

Switching between individual tabs

The program's tabs appear at the top of the program window. The user can go to a specific tab by clicking the name of that tab. The "Data" tab, which is used for entering the project data, appears in the upper left corner of this window.

Mouse Cursor Modes

ELPLA has two modes of mouse cursor operation in "Data" window: View mode and Edit mode. The program can only be in one mode at a time. By default, the program is in view mode and the mouse cursor is an arrow. For edit mode, the cursor will change from an arrow to a cross hair indicating the mode in which is being operated. Press "Esc" key to exit the edit mode and return to the view mode.

Node Selection

In edit mode, nodes are selected by clicking on each node individually or selecting a group of nodes. A group of nodes can be selected by holding the left mouse button down at the corner of the region. Then, dragging the mouse until a rectangle encompasses the desired group of nodes. When the left mouse button is released, all nodes in the rectangle are selected.

Undo and Redo Commands

ELPLA allows you to go back up to 12 steps at a time when defining project process. Therefore, it is possible to undo a series of actions previously performed. If you go too far in the undo process, you may redo those actions. You can undo/ redo most drawing, editing and assignment operations. To undo/ redo a certain action, choose the "Undo/ Redo" command from "Edit" menu.

Snap Tools

The snap tools are essentially a fast and accurate way to draw and edit objects. Snap tools find the closest snap location to your pointer as you move it over your model. The snap tools can be turned on and off as you draw, so you can snap to different locations for every point. More than one snap tool can also be set at the same time giving you a choice of snap locations. The snap options are set by the data located in the "Plot Parameters" dialog box under the "Options" menu in "Setting" Tab.

Defining Data

Most of *ELPLA* data can be defined either graphically or numerically (in tables). In this tutorial, the user will learn how to carry out the data using one method depending on the specified example. By completing the all examples, the user will learn to define most of the data both graphically and numerically.

Project identification

The user can define three lines of texts to identify a project and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered.

Reinforcement data

The design code parameters such as partial safety factors for concrete strength, steel strength and internal stresses are defined by choosing the "Design code parameters" command from the "Main data" menu in "Setting" Tab.

Reinforcement data such as design code, concrete grade, steel grade and concrete covers are defined by choosing the "Reinforcement" command from "Slab" menu in "Data" Tab. Design code parameters are standard data for all projects, while reinforcement data may be varied from project to another.

Edit List Box

Some *ELPLA* data are defined by list box dialog as shown in Figure 3. In this list box the "Insert", "Copy" and "Delete" commands are applied for the selected row. To define or modify a value in this table, type that value in the corresponding cell, then press "Enter" key.

No. I [-]		Column Types I [-]	Load P [kN]	X-position x [m]	Y-position y [m]	Column label CZ	
•	1	1	500.0	5.42	9.50	C1	<u>C</u> ancel
2	2	1	500.0	3.25	4.96	C2	Insert
3	3	1	500.0	7.00	0.50	C3	
4	4	1	500.0	8.02	9.50	C4	<u>C</u> opy
5	5	1	500.0	11.12	9.50	C5	Delete
e	6	1	500.0	11.14	0.50	C6	Delete
1	7	1	500.0	15.00	2.00	C7	New
8	8	1	500.0	15.00	8.00	C8	
9	9	1	500.0	0.75	0.50	C9	Send to Excel
1	10	1	500.0	16.25	4.98	C10	
1	11	1	500.0	3.84	0.50	C11	Paste from Excel
1	12	1	500.0	8.00	5.00	C12	Help

Figure 3 List box used by *ELPLA*

Analysis progress

During the analysis of problems, all computations and analysis progression according to the defined method are progressively reported. As shown in Figure 4, the analysis progress menu reports the various phases of calculations. In addition, the status bar of "Solver" Tab displays information about the progress of calculation as the program analyzes problems.

Determining flexibility coefficients of the soil	
Assembling the flexibility matrix	
Time remaining = 00:00:07	
I = 68 from 399 steps	<u>C</u> ancel

Figure 4 Analysis progress menu

4. Description of the examples

This Tutorial contains 13 examples. These examples are presented in order to illustrate how to use *ELPLA* for analyzing axisymmetric structures and tanks. For each example discussed in this Tutorial, data files and some computed files are included in *ELPLA* software package. The file names and contents of the examples are given as follows. Besides, a key figure of each problem is shown that contains the main data concerning the structure shape and loads. Examples can be run again by *ELPLA* to examine the details of the analysis or to see how the problem was defined or computed and to display, print or plot the results.

Example 1	Analysis of a circu	lar loaded area resting on different	soil layers
-----------	---------------------	--------------------------------------	-------------

Exam	ole 2	Analysis	of an	annular	plate	resting of	on I	Ninkler's	medium
L'Aunt	10 2	1 mai yong	or un	umunu	prace	resung v	<i>J</i> 11 <i>i</i>	i innici i	meanam

Example 3 Analysis of a tank with a fixed base

Example 4 Analysis of a reservoir wall with a variable wall thickness

Example 5 Analysis of a tank covered with a spherical dome

Example 6 Analysis of a tank resting on *Winkler's* medium

Example 7 Analysis of a tank with a conical base resting on *Winkler's* medium

Example 8 Analysis of a tank resting on half space soil medium

Example 9 Analysis of a tank with a different base thickness resting on half space soil medium

Example 10	Analysis of a cylindrical	water container with a	conical base
------------	---------------------------	------------------------	--------------

Analysis of a chimney with a hyperbolic shell wall Example 11

Example 12 Analysis of an irregular container resting on a layered soil

Example 13	Analysis of a	circular silo for	r storing bulk	materials
------------	---------------	-------------------	----------------	-----------

Analysis of a circular loaded area resting on different soil layers

Contents

Page

Description of the problem	3
Geometry and properties	3
Creating the project	4
Calculation method	
Project identification	
FE-Net data	9
Soil Properties	
Shell properties	
Loads	
Carrying out the calculations	20
Viewing data and results	22
Viewing data and result graphics	
Listing data and results in tables	23
	Description of the problem Geometry and properties Creating the project Calculation method Project identification FE-Net data Soil Properties Shell properties Loads Carrying out the calculations Viewing data and results Viewing data and results Listing data and results in tables

1 Description of the problem

An example of a loaded area resting on different soil layers is selected to illustrate some features of *ELPLA* for analyzing shell elements using circular and annular elements.

2 Geometry and properties

A circular loaded area of a radius a=5 [m] acting on three different soil layers as shown in Figure 1.1.

Figure 1.1 Soil profile under the circular loaded area

3 Creating the project

In this section, the user will learn how to create a project for analyzing a circular loaded area resting on different soil layers. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

3.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 1.2. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 1.2).

Figure 1.2 "Analysis Type" Form

As the analysis type is a circular loaded area problem, select "Analysis of rotational shell" button, and check "Shell with a raft foundation" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Calculation Methods" Form appears, Figure 1.3.

To define the calculation method:

- Select the calculation method "9-Flexible Foundation"
- Select the subsoil model as "Layered soil model"
- Click "Next" button to go to the next Form

Calculation Method	×
Calculation Method:	
O 1- Linear Contact Pressure (Conventional Method)	
🔿 2/3- Constant/Variable Modulus of Subgrade Reaction	
🔿 4- Modification of Modulus of Subgrade Reaction by Iteration	
○ 5- IsotropicElasticHalfSpace	
○ 6- Modulus of Compressibility (Iteration)	
○ 7- Modulus of Compressibility (Elimination)	
🔿 8- Modulus of Compressibility for Rigid Raft	
9-Flexible Foundation	
Subsoil model:	
○ Half Space model	
Layered soil model	
<u>H</u> elp <u>L</u> oad Save <u>A</u> s <u>C</u> ancel < <u>B</u> ack <u>N</u> ext > <u>Save</u>	

Figure 1.3 "Calculation Methods" Form

The last Form in the wizard is the "Options" Form, Figure 1.4. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Since no option will be considered in the analysis, click the "Save" button.

Calculation Method	×
Options:	
Slab With Girders	
🗌 🧎 Addtional Springs	
🗌 🚠 Supports/ Boundary Conditions	
🗌 🔐 Determining Limit Depth	
Concrete Design	
Nonlinear Subsoil Model	
Determining Displacements in Soil	
Determining Stresses in Soil	
Determining Strains in Soil	
Trifluence of Additional Settlements on the Raft	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
O Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next > Save	
igure 1.4 "Options" Form	

After clicking "Save" button, the "Save as" dialog box appears, Figure 1.5. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Circular loaded area ". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As				×
← → • ↑	« ELPLA 12.2 Projects » Tutorial » Example	e1 ∨ Ĉ	, ○ Search Examp	le 1
Organize 🔻 🛛 No	ew folder			······································
^	Name	Date modified	Туре	Size
	No iter	ms match your search.		
_				
~				
File <u>n</u> ame:	Circular loaded area			~
Save as <u>t</u> ype:	Isolated slab foundation-files (*.PO1)			~
 Hide Folders 			<u>S</u> ave	Cancel

Figure 1.5 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Circular loaded area] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

3.2 Project identification

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 1.6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a circular loaded area resting on different soil layers"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification >
Project Id	lentification:
Title	Analysis of a circular loaded area resting on different soil layers
Date	15/11/2021
Project	Axisymmetric Structures and Tanks
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s

Figure 1.6 "Project Identification" dialog box

3.3 FE-Net data

For the given problem, the shell has a circular shape with a radius of a=5 [m] and is divided into 10 segments. *ELPLA* has different procedures for defining the FE-Net.

To define the FE-Net for this shell, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 1.7. This wizard will guide you through the steps required to generate a FE-Net. The first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of shells. These net templates are used to generate standard nets.

Figure 1.7 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 0 in the "Height" edit box, as the example is a circular plate
- Type 5 in the "Radius" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Net of Base" Form appears Figure 1.8.

To edit the grid spacing in *x*-direction, do the following steps in "Grid in *x*-direction" frame:

- Choose "Constant grid interval" check box
- Type 10 in the "No. of grid intervals" edit box

Analysis of rotational shell	×
Net of Base	Grids in x-direction:
Y A	 Constant ring area Variable grid interval
	No. of grid intervals
X,R	Geometry Radius Ru [m] 5.0
<u>H</u> elp <u>C</u> ancel	< <u>B</u> ack <u>N</u> ext > <u>F</u> inish

Figure 1.8 "Net of Base" Form

ELPLA will generate a sector from the circular area with 10 circular elements. The following window in Figure 1.9 appears with the generated net.

Hile File	눱 📦 🕯 E-Net Dat	💰 🚓 🏰 " a Edit FE	🖌 🛃 🗟	Setting	م ک View	ELPLA	- [Circula	ır loaded	area]											- 0	× ^ ?
FE-Net Generation	- F	Slab Corner Opening Co Reference C	s * orners * Corners *	Conr	e Coordin nectivity M Corners	ates 👘	Opening Reference	Corners s *	C Zoo Zoo C Zoo	m In m Out jinal Size	@ Zoom Wir ∑3 Move Zoom %	ndow 🖉	Zoom Upper F Zoom Upper L Zoom Lower R	Right 🧹 Zoom I Left Right	Lower Left	Undo	Redraw	Close			
FE-Net Gener	ation	Graphica	lly			In table						Win	dow			Undo	Refresh	Close			
	0.	.0 0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0										^
0.8																					
<																					>
r [m] = 11.4	z [m] =	1.6																			

Figure 1.9 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 1.9 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 1.9 to close the "FE-Net" window and return to *ELPLA* main window

3.4 Soil Properties

In *ELPLA*, there are three different soil models with several calculation methods. Therefore, the soil properties for each method are required to be defined according to the used soil model. In the current example, the soil model, which is used in the analysis, is a "Layered Soil Model". This model requires that the subsoil have to be defined by boring logs. In the example, the boring log has multi-layers with different soil materials. The geotechnical data for each layer is unit weight of the soil γ_s and modulus of Elasticity for loading E_s and reloading W_s or Compression index Cc and recompression index Cr.

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" Window in Figure 1.10 appears with a default-boring log.

Figure 1.10 "Soil Properties" window with a default-boring log

In Figure 1.10, soil properties are defined through the "Data" menu, which contains the following two commands:

- "Soil Data" command defines the individual boring logs
- "Main Soil Data" command defines the general data for all soil layers

To enter the soil properties for the boring log of the current example

- Choose "Soil Data" command from "Data" menu in the window of Figure 1.10. The following dialog box in Figure 1.11 with default-boring log data appears

	Delete Layer	Layer depth under the ground surface [m] 10.00
Copy <u>B</u> oring log Delete Boring	Insert Bo <u>r</u> ing	X-coordinate of boring [m] 0.00 Y-coordinate of boring [m] 0.00 Boring Log Label BPN1

Figure 1.11 "Soil data" dialog box with default-boring log data

In the "Geotechnical data of the layer" dialog group box in Figure 1.11, Soil properties are defined by Modulus of compressibility, define the geotechnical data of the first soil layer of the boring log as follows:

E_s	$= 8\ 000$	$[kN/m^2]$
W_s	$= 8\ 000$	$[kN/m^2]$
Gam	= 18	$[kN/m^3]$
С	= 10	$[kN/m^2]$
φ	= 0	[°]

Due to the presence of the ground water, the soil above the ground water level has a differential unit weight from the soil under that level. Therefore, the layer depth of the first layer is taken to be 2 [m], which is equal to the ground water level. Now, type this value in "Layer depth under the ground surface" edit box.

In order to draw the soil layers by different symbols according to the German Standard DIN 4023, the soil type and color for each layer must be defined.

To define the soil type and color for the first layer, select "fS, Fine sand" as the soil type in "Main soil type 1" combo box in "Soil and rock symbols" dialog group box in Figure 1.11. The color of the fine sand layer according to the German Standard DIN 4023 will be automatically created. The user can change this color. In addition, a short text "fS" will be automatically created for the fine sand.

To enter the second layer of the boring log

- Click "Copy Layer" button in Figure 1.11. A layer that has the same properties of the first layer will be copied
- Use the vertical scrollbar to move to the second soil layer. Layer No. will be typed automatically at the upper-left corner of the main dialog box of soil layers as a head title
- Change the value of the unit weight of the soil for the second soil layer from 18 $[kN/m^3]$ to 8 $[kN/m^3]$
- Change the value "*ES*" and "*Ws*" from 8000 $[kN/m^2]$ to 5000 $[kN/m^2]$
- Change the value of the layer depth under the ground surface from 2 [m] to 4 [m]
- From "Soil and rock symbols" dialog group box, Change "fS, Fine sand" into "T, Clay" as the soil type of the second layer is clay

To enter the third layer

- Click "Insert Layer" button in Figure 1.11, then a layer will be inserted
- Use the vertical scrollbar to move to the third soil layer
- In "Geotechnical data of the layer" dialog group box in Figure 1.11, Soil properties are defined by Compression Index *Cc*, define the geotechnical data of the clay layer as follows:

Cc	= 0.04		Phi	= 30	[°]
Cr	= 0.04		С	= 10	$[kN/m^2]$
Gam	= 8	$[kN/m^3]$	eo	= 0.85	

- Select "T, Clay" as the soil type in "Main soil type 1" combo box in "Soil and rock symbols" dialog group box
- Type 8 in the "Layer depth under the ground surface" edit box

Note that the unit weight of the soil is used to determine the uniform load $q \, [kN/m^2]$ on the circular area, which is equal to $\gamma_s \times d_f$.

Now all data and parameters for the boring log (Figure 1.12) have been entered.

Figure 1.12 boring log

To enter the main soil data for all layers, choose "Main Soil Data" command from "Data" menu in Figure 1.10. The following dialog box in Figure 1.13 appears with default main soil data. The main soil data for the current example, which are required to be defined, are the settlement reduction factor α [-] and the groundwater depth under the ground surface G_w [m]. Any other data corresponding to main soil data are not required for this example. Therefore, the user can use the default values.

In the dialog box of Figure 1.13, enter the settlement reduction factor α [-] and the groundwater depth under the ground surface G_w [m]. Then click "OK" button.
Main Soil Data			:	×
Soil Properties Calculation parameters of flexibility coefficients				
Main Soil Data:				
Settlement reduction factor Alfa <= 1		Alfa	[-] 1.00	
Groundwater depth under the ground surface		Gw	[m] 2j	
Bearing capacity factors:				
Bearing capacity factors are determined according to				
German Standard DIN 1054				
O Euro code EC 7	🔿 Terzaghi			
O Egyptian codeECP	O Meyerhof			
<u>O</u> k <u>C</u> ancel	<u>H</u> elp			

Figure 1.13 "Main Soil Data" dialog box

After entering all data and parameters of the boring log, do the following two steps:

- Choose "Save" command from "File" menu in Figure 1.10 to save the data of boring logs
- Choose "Close" command from "File" menu in Figure 1.10 to close "Soil properties" window and return to *ELPLA* main window

3.5 Shell properties

To define the shell properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 1.14 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, and the unit weight of the shell. Any other data corresponding to shell properties in the program menus are not required for this example.

Figure 1.14 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 1.15 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness. Then click "OK" button.

Group No.	E-Modulus of slab	Poisson's ratio of slab	Slab thickness		<u>0</u> k	
-]	[kN/m2]	Nue [-]	d [m]		<u>C</u> ancel	
1	2E+07	0.25	0.25		<u>I</u> nsert	
•					<u>С</u> ору	
					<u>D</u> elete	
					<u>N</u> ew	
					Send to <u>E</u> xce	
				F	aste from Exc	el
				-		

Figure 1.15 "Defining element groups" list box

To enter the unit weight of the shell, choose "Unit weight" command from "Shell Properties" menu in the window of Figure 1.14. The following dialog box in Figure 1.16 with a default unit weight of 25 $[kN/m^3]$ appears. Type 400 in the "Unit weight" edit box, to define the uniform load on the circular area. Then click "OK" button.

Unit weight			×
Unit weight		Gb [kN/m3] 400
<u>0</u> k	New	<u>C</u> ancel	<u>H</u> elp

Figure 1.16 "Unit weight" dialog box

After entering the Shell Properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 1.14 to save the shell properties
- Choose "Close" command from "File" menu in Figure 1.14 to close the "Shell Properties" window and return to *ELPLA* main window

3.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 1.17 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 1.17. In this example, there is not applied load, as the load has been already defined by the unit weight of the plate.

Figure 1.17 Loads windo

Do the following two steps:

- Choose "Save" command from "File" menu in Figure 1.17 to save the load data
- Choose "Close" command from "File" menu in Figure 1.17 to close the "Loads" window and return to *ELPLA* main window

Creating the project is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

4 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 1.18.

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining flexibility coefficients of the soil
- Analysis of the flexible foundation
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

Carrying out all computations

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab window.
- The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 1.19 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 51 from 153 steps	Cancel

Figure 1.19 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 1.20. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Totalload	[kN] =	7854.0
Sum of contact pressures	[kN] =	7854.0
<u>O</u> k	<u>H</u> elp	

Figure 1.20 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

5 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab.

5.1 Viewing data and result graphics

To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 1.21).

苦 🗋 📔	🚰 🛄 🗍 Data	🔊 🖝 👼 Solver	📲 🎬 🔜 🔍 🗎 🧔	∰ 🎦 (™ 🖛 ELPLA - g View	- [Circular loaded area]						-	٥	× ^ ?
In Iso Plan	metric /iew	Contour Lines	I Isometric View ₩ Result Values → Distribution Curves	 Circular Diagrams Deformations Principal moments 	TT Support Reactions L Punching Shear Rotational shell Results ~	 ↘ Deformation Vectors	Boring Logs/ Boring Limit Depth Locations	Sections in shell base	Display Tables of Data •	Display Tables of Results •			
Figu	re 1	1.21	"Resu	lts" Tab									

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Boring logs and limit depth
- Sections in the shell base

To view sections in shell base

- Choose "Sections in shell base" command from "Section" menu. The following option box in Figure 1.22 appears
- In the "Sections in shell base" option box, select "Base settlements w" as an example for the results to be displayed
- Click "OK" button

The Settlements are now displayed as shown in Figure 1.23.

Sections in shell base	×
Select itemto display:	
Base settlements w	<u>0</u> k
O Base contact pressures q	<u>C</u> ancel
 Soil stiffnesses ks 	
	<u>H</u> elp

Figure 1.22 "Sections in shell base" option box

Figure 1.23 Base settlements Sections in shell base

5.2 Listing data and results in tables

The "Result" Tab contains the commands of listing data and results. The commands for listing data and results in tables are:

-	Display tables of data	-	Display tables of results
-	List tables of data through Text-	-	List tables of results through Text-

Editor Editor

To list results in a table

- Choose "Display tables of Results" command from "List" menu. The following option box in Figure 1.24 appears
- In the "Display Tables of Results" option box, select "Settlements/Contact pressures" as an example for the result to be listed in a table
- Click "OK" button. The loading results are now listed (Figure 1.25)
- Choose "Send to Excel" from "Sending" menu if you wish to export the table to a MS Excel application, Figure 1.26

Figure 1.24 "Display Tables of Results" option box

📇 🗋 🞽 File	Data S	影 砩 "旨 olver	🎬 🛃 🔍 Results S	🖺 🎲 🔊 . etting V	ew List							- 0 ×
Page Pr Setup Pre	int Print	Send to Word	Send to I Excel	Paste Cut	 Copy to the Clipboard Delete Select All 	B I U abs A · A A) II II () IT E E E E E E	 ☆ Next Page ↔ First Page ↔ Previous Page ⇒ Last Page Page No. 	Undo	Find 梦 Find Next む Replace	Close	
Pr	int	Ser	nding		Clipboard	Font	Paragraph	Preview	Undo	Editing	Close	
Settler	ments/Cor	tact pr	x									-
Node No. I C C C No. C No. C No. C C C C C C C C C C C C C C C C C C C	Distance r [m] 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00	Distance Zmj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Settlement W [cm] 3.97 5.35 6.16 6.75 7.19 7.51 7.75 7.92 8.03 8.09 8.09	Contact pressure (84/m2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0								

Figure 1.25 List of loading data

Figure 1.26 Exported data in MS Word

Analysis of an annular plate resting on *Winkler's* medium

Contents

Page

1	Description of the problem	3
2	Geometry and properties	3
3	Analysis of the plate	4
4	Creating the project	5
4.1	Calculation method	5
4.2	Project identification	9
4.3	FE-Net data	9
4.4	Soil Properties	
4.5	Shell properties	
4.6	Supports/ boundary conditions	
4.7	Loads	
5	Carrying out the calculations	
6	Viewing data and results	
	-	

1 Description of the problem

An example of an annular plate resting on *Winkler's* medium is selected, to illustrate some features of *ELPLA* for analyzing shell elements using circular and annular elements.

2 Geometry and properties

A simply supported annular plate subjected to a uniform load resting on *Winkler's* medium is chosen as shown in Figure 2.1. Load on the plate, plate radii, elastic properties of the soil and the plate are:

Inner radius of the plate	r_1	= 2.5	[m]
Outer radius of the plate	r_2	= 5	[m]
Thickness of the plate	t	= 0.25	[m]
Uniform load on the raft	p	= 200	$[kN/m^2]$
Modulus of sub grade reaction of the soil	k_s	= 10000	$[kN/m^3]$
Young's modulus of the plate material	E_c	$= 2.7 \times 10^7$	$[kN/m^2]$
Poisson's ratio of the plate material	v_c	= 0.2	[-]

Figure 2.1 Annular plate subjected to a uniform load

3 Analysis of the plate

The available method "Constant Modulus of Subgrade Reaction /2" in *ELPLA* is used here to determine the vertical displacement and moment of the plate on *Winkler's* medium. Figure 2.2 shows the annular plate with 10 annular regions and supports.

Figure 2.2 Annular plate with 10 annular regions and supports

4 Creating the project

In this section, the user will learn how to create a project for analyzing an annular plate resting on *Winkler's* medium. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 2.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 2.3).

Figure 2.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 2.3, define the analysis type of the problem. As the analysis type is an annular plate, select "Analysis of rotational shell" button, and check "Shell with a raft foundation" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Calculation Methods" Form appears, Figure 2.4.

To define the calculation method:

- Select the calculation method "2/3 Constant/ Variable Modulus of Subgrade Reaction"
- To determine the modulus of subgrade reaction, select "Modulus is defined by the user" option
- Click "Next" button to go to the next Form

Calculation Method	×
Calculation Method:	
O 1- Linear Contact Pressure (Conventional Method)	
● 2/3- Constant/ Variable Modulus of Subgrade Reaction	
O 4- Modification of Modulus of Subgrade Reaction by Iteration	
○ 5-IsotropicElasticHalfSpace	
○ 6- Modulus of Compressibility (Iteration)	
○ 7- Modulus of Compressibility (Elimination)	
🔿 8- Modulus of Compressibility for Rigid Raft	
O 9-Flexible Foundation	
Determining Modulus of Subgrade Reaction:	
O Modulus is calculated from half space	
O Modulus is calculated from soil layers	
Modulus is defined by the user	
Help Load Save As Cancel < Back Next > Save	

Figure 2.4 "Calculation Methods" Form

The last Form in the wizard is the "Options" Form, Figure 2.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Calculation Method	×
Options: Slab With Girders Addtional Springs Supports/ Boundary Conditions Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Stresses in Soil Determining Strains in Soil Image: The Strain Stresses in Soil Image: The Stresses in Soil Image: Str	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
○ Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next >	

Figure 2.5 "Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 2.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "annular plate". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As				×
\leftrightarrow \rightarrow \checkmark	Kample 2 Xample 2	5 V	🔎 Search Exampl	e 2
Organize 🔻	New folder			::: • ?
<u> </u>	lame ^	Date modified	Туре	Size
		No items match your search.		
- × <				>
File <u>n</u> am	ne: Annular plate			~
Save as <u>t</u> yp	e: Isolated slab foundation-files	(*.PO1)		~
 Hide Folders 		[<u>S</u> ave	Cancel

Figure 2.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [annular plate] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 2.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of an annular plate resting on *Winkler's* medium"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X	
Project Id	dentification:	
Title	Analysis of an annular plate resting on Winkler's medium	
Date	24/11/2021	
Project	Axisymmetric Structures and Tanks	
<u>S</u> ave	e <u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s	

Figure 2.7 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, the shell has an annular shape with an outer radius of b = 5 [m] and an inner radius of a = 2.5 m. To define the FE-Net for this plate, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 2.8. This wizard will guide you through the steps required to generate a FE-Net.

The first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of shells. These net templates are used to generate standard nets.

Figure 2.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 0 in the "Height" edit box, as the example is an annular plate
- Type 5 in the "Radius" edit box, as the outer radius is b = 5 m
- Click "Next" button to go to the next Form

Figure 2.9 "Net of Base" Form

The next Form of the "Analysis of rotational shell" wizard is the "Net of Base" Form Figure 2.9.

To edit the grid spacing in *x*-direction, do the following steps in "Grid in *x*-direction" frame:

- Choose "Variable grid interval" check box.
- Click "Grid Intervals" button, the following "Grid intervals in *x*-direction" form appears Figure 2.10
- Define the grid intervals as the following

Figure 2.10 "Grid intervals in *x*-direction" Form

ELPLA will generate a sector from the annular area with 11 circular elements. The following Window in Figure 2.11 appears with the generated net.

File FE-Net	👂 🐨 📽 🍟 🎽 🔜 😡 Data Edit FE-Net	L 🌇 🍪 崎 🍽 〒 ELPLA - [Annular plate] Setting View							- 0	× ^ ?
FE-Net Generation -	Slab Corners * Opening Corners * Reference Corners *	 Node Coordinates Opening Corners Connectivity Nodes References ~ Slab Corners 	C Zoom In C Zoom Out	Com Window	Zoom Upper Right Zoom Lower Left Zoom Upper Left Zoom Lower Right	Undo	Redraw	Close		
FE-Net Generation	Graphically	In table			Window	Undo	Refresh	Close		
	0.0	2.5 2.8 3.0 5.3 3.5 3.	8 4.0 4.3 4.5	4.8 5.0						^
0.7	¢									ļ
0.0				R						Ū
< X[m] = 7.6 X[m	1 = 1.3									>

Figure 2.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 2.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 2.11 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Soil Properties

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" form in Figure 2.12 appears, enter the modulus of subgrade reaction of the soil and the ground water depth under the ground surface. Other data for this example is not required.

Soil data			
Modulus of subgrade reaction	k_s	$= 10\ 000$	$[kN/m^3]$
Ground water depth under the surface	Gw	= 1	[m]

Soil Properti	es						-		×
Boring log No. I	Boring Log Label	X-coordinate of boring [m]	Y-coordinate of boring [m]	Moduli of subgrade reactions ks [kN/m3]	Ultimate bearing capacity Qul [kN/m2]			<u>S</u> ave <u>C</u> ancel	
1	BPN1	0.0	0.0	10000	0			Insert	
•								<u>С</u> ору	
								<u>D</u> elete	
								<u>L</u> oad	
								<u>N</u> ew	
							<u>P</u> as	ste from E	ixcel
							S	end to <u>E</u> x	cel
Groundwate	er:							Save <u>A</u> s	
Groundwat	er depth unde	er the ground surfa	ace	(Gw [m] 1.00	-		<u>H</u> elp	

Figure 2.12 "Soil Properties" form

4.5 Shell properties

To define the annular plate properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 2.13 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups and unit weight of the plate. Any other data corresponding to the shell properties in the program menus are not required for this example.

Figure 2.13 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 2.14 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness, the thickness of the inner ring is eliminated by defining its slab thickness by zero. Then click "OK" button.

Figure 2.14 "Defining element groups" list box

Choose "Group Regions" command from "In table" menu. The following list box in Figure 2.15 appears. As the inner radius is a = 2.5m, and the elements of the plate differ in thickness, Edit the "Group no" value for each element as the following. Then click "OK" button.

Group Regions		– 🗆 ×				
Element No. I [-]	Group No.	<u>k</u>				
1	2	<u>C</u> ancel				
2	1	Insert				
3	1					
4	1	<u>С</u> ору				
5	1	Dalata				
6	1	Delete				
7	1	New				
8	1					
9	1	Send to Excel				
10	1					
11	1	Paste from Excel				
* *		Help				

Figure 2.15 "Group Regions" Form

To enter the unit weight of the plate, choose "Unit weight" command from "Shell Properties" menu in the window of Figure 2.13. The following dialog box in Figure 2.16 with a default unit weight of 25 [kN/m³] appears. Type 800 in the "Unit weight" edit box, note that the unit weight of the plate material is used to determine the uniform load q [kN/m²] on the annular area, which is equal to $\gamma_b \times d$. Click "OK" button.

Unit weight	×
Unit weight	ch [lat/se]
Ok	GD [KN/m3] 800

Figure 2.16 "Unit weight" dialog box

Now the shell properties have been entered and the sector of the plate appears as follows in Figure 2.17.

Figure 2.17 "Shell Properties" Window

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 2.17 to save the shell properties
- Choose "Close" command from "File" menu in Figure 2.17 to close the "Shell Properties" window and return to *ELPLA* main window

4.6 Supports/ boundary conditions

To define supports choose "Supports/ Boundary Conditions" command from "Data" Tab. The following Tab in Figure 2.18 appears.

H]]]] [] [] [] [] [] [] [] [] [] [] [ılar plate]						-	٥	× ^ ?
- b- Select Nodes	Node restraints	Com In Com Out		Undo	Redraw	Close			
Graphically	In table		Window	Undo	Refresh	Close			
< X [m] = 6.4 Y [m] = 1.2									>

Figure 2.18 "Supports/ Boundary Conditions" Window

To define the supports

- Choose "Select Nodes" command from "Graphically" menu in Figure 2.18. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on nodes that have supports as shown in Figure 2.19
- After selecting nodes of supports, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu (Figure 2.18). The "Supports/ Boundary Conditions" dialog box in Figure 2.20 appears

Figure 2.19 Selection of nodes that have supports

In this dialog box

- Type 0 in the "Displacement w" edit box to define the vertical supports, as the annular plate is prevented from moving in the vertical direction at its ends
- Click "OK" button

Supports/ Boundary Conditions	×
Node restraints: Displacement Displacement Rotation	u [cm] F w [cm] of Theta [Rad] F
<u>O</u> k <u>C</u> ancel <u>H</u> elp	<< <u>L</u> ess

Figure 2.20 "Supports/ Boundary Conditions" dialog box

Figure 2.21 Supports on the screen

After entering supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 2.21 to save the data of supports
- Choose "Close" command from "File" menu in Figure 2.21 to close the "Supports/ Boundary conditions" window and return to the main window

4.7 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following Window in Figure 2.22 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 2.22. For this example, there is not applied load, as the load has been already defined by the unit weight of the plate.

Figure 2.22 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 2.22 to save the load data
- Choose "Close" command from "File" menu in Figure 2.22 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the plate is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 2.23.

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining the modulus of subgrade reaction
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

Carrying out all computations

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window.

Analysis progress

Analysis progress menu in Figure 2.24 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 55 from 63 steps	Cancel

Figure 2.24 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 2.25. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution			
V - Load			
Totalload	[kN] =	11739.9	
Sum of contact pressures	<u>H</u> elp	11/33.5	

Figure 2.25 Menu "Check of the solution"

Ignore the elimination of the negative contact pressure which appears at the inner ring.

Negative contact pressures				×
Negative contact pressure appears.				
Negative contact pressures:				
Sum of positive contact pressures	Q+ve	[kN]	894.8	
Sum of negative contact pressures	Q-ve	[kN]	0.0	
Percent	Q-ve/Q+ve	[%]	0.00	
Separation areas:				
Sum of contact areas	A+ve	[m2]	68.7	
Sum of separation areas	A-ve	[m2]	9.8	
Percent	A-ve/A+ve	[%]	14.29	
Elimination of the negative contact pressures may tak Do you want to eliminate negative contact pressures? <u>Y</u> es <u>N</u> o	e several minute	s.	<u>H</u> elp	

Figure 2.26 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 2.27).

🗄 I 🗋 🖆	7 "L 🕅		🌐 🌇 (™ 🖛 ELPLA	- [Annular plate]					_	٥	×
File	Data	Solver Results Sett	ing View								~ 🕐
In Isor Plan V	metric liew	Contour Lines	 Circular Diagrams Deformations Principal moments 	➡ Support Reactions ➡ Punching Shear ➡ Rotational shell Results ▼	 ▶ Deformation Vectors	Boring Logs/ Boring Limit Depth Locations	Sections in Sections in shell wall	Display Tables Display Table of Data • Of Results •	5		

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Support reactions
- Rotational shell results
- Sections in shell wall
- Sections in shell base
- Display tables of data
- Display tables of results

To view the meridional moments in the shell base

- Choose "Sections in shell base" command from "Section" menu. The following option box in Figure 2.28 appears
- In the "Sections in shell base" option box, select "Meridional moments *My*" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 2.29.

Sections in shell base		Х	
Select itemto display:			
○ Radial forces Nr	O Meridional forces Ny		
 Meridional moments My 	◯ Tangential moments Mt		
O Horizontal deformations Vh			
○ Base settlements w	<u>0</u> k		
O Base contact pressures q	Cancel	7	
○ Soil stiffnesses ks		_	
O Meridional rotations Vm	<u>H</u> elp		

Figure 2.28 "Sections in shell base" option box

Figure 2.29 Meridional moments in shell base

To view element groups of the plate

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 2.30 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 2.30 "Data – In Plan" option box

To draw the thickness of the annular plate

- Choose "Plot Parameters" command from "Setting" Tab. The "Plot Parameters" dialog box in Figure 2.31 appears
- In the "FE-Net" Tab, check the "Draw girder thickness" check box in the "Rotational shell system" dialog box
- Click "OK" button

Plot Parameters	×
General plot parameters Soil plot parameters Solid elemen	ts: FE-Net:
FE-Net:	
Display node numbering	
Display coordinates X/Y	
Display element numbering	
Display FE-Net	
Display FE-Net in separated elements	
Display reference points/ lines	
Display column types	
Element groups:	Rotational shell system:
Color element groups and slab thickness	✓ Color girders
	Draw girder thickness
<u>Ok</u> <u>S</u> ave <u>C</u> ancel	Default parameters <u>H</u> elp

Figure 2.31 "Plot Parameters" dialog box

To view the reactions of the supports on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 2.32 appears
- In this check group box, check "Supports /Boundary Conditions" and "Supports Reactions RV" check boxes
- The user can choose any other data to be displayed
- Click "OK" button

Figure 2.32 "View Grouping" check group box

Figure 2.33 Element groups of the annular plate

Analysis of a tank with a fixed base

Contents

Page

1	Description of the problem	3
2	Tank geometry and properties	3
3	Numerical Analysis	4
4	Creating the project	4
4.1	Calculation method	
4.2	Project identification	
4.3	FE-Net data	
4.4	Shell properties	
4.5	Supports/ boundary conditions	
4.6	Loads	
5	Carrying out the calculations	
6	Viewing data and results	

1 Description of the problem

An example of an axi-symmetrically circular cylindrical tank with a fixed base is selected to illustrate some features of *ELPLA* for analyzing shell elements.

2 Tank geometry and properties

A circular cylindrical tank of a radius of a = 7 [m] and a height of H = 5 [m] is considered as shown in Figure 3.1. Thickness of the tank wall is t = 0.25 [m]. The tank is filled with water. The lower edge of the tank is clamped. Figure 3.1 shows the circular cylindrical tank with its dimensions, while the tank material and unit weight of the water are listed in Table 3.1.

Table 3.1 Tank material and water unit weight

Modulus of Elasticity of the tank material	E_c	$= 2 \times 10^7 [kN/m^2]$	
Poisson's ratio of the tank material	v_c	= 0.15 [-]	
Unit weight of the water	γ_w	= 10 [kN/m ³]	

Figure 3.1 Cylindrical circular tank with dimensions

3 Numerical Analysis

The analysis of circular cylindrical shell tank is carried out using the finite element method. In the analysis, the height of the tank is divided into 50 equal segments. In each segment, element size is 0.1 [cm] as shown in Figure 3.2.

Figure 3.2 Finite element mesh of the tank

4 Creating the project

In this section, the user will learn how to create a project for analyzing a tank with a fixed base. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 3.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 3.3).

Figure 3.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 3.3, define the analysis type of the problem. As the analysis type is a tank with a fixed base problem, select "Analysis of rotational shell" button, and check "Shell with an opening base" option then click "Next" button to go to the next Form.

The last Form in the wizard is the "Options" Form, Figure 3.4. In this Form, ELPLA displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Calculation Method	>
Options:	
Slab With Girders	
Addtional Springs	
🗹 杰 Supports/ Boundary Conditions	
Determining Limit Depth	
Concrete Design	
Nonlinear Subsoil Model	
Determining Displacements in Soil	
Determining Stresses in Soil Determining Stresses in Soil	
Determining Strains in Son	
$\Box \mathbf{T}$ Influence of Temperature Change on the Raft	
The second sector of the secto	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
○ Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next >	<u>S</u> ave

'Options" Form Figure 3.4

After clicking "Save" button, the "Save as" dialog box appears, Figure 3.5. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Tank with fixed base". ELPLA will use automatically this file name in all reading and writing processes.

Save As						×
\leftrightarrow \rightarrow \uparrow	« ELPLA12.2 projects » Tutorial 2 »	Example 3	ٽ ~		Example 3	
Organize 🔻 🛛 Ne	ew folder					?
↑ Name	^	Date modified	Туре		Size	
	Ne	o items match your sea	rch.			
¥						
File <u>n</u> ame:	Tank with fixed base					~
Save as <u>t</u> ype:	Isolated slab foundation-files (*.PO1)					\sim
∧ Hide Folders				<u>S</u> ave	Cano	cel

Figure 3.5 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Tank with fixed base] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 3.6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a tank with a fixed base"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification	×							
Project Id	lentification:								
Title	Analysis of a tank with a fixed base								
Date	27/11/2021								
Project	Project Axisymmetric Structures and Tanks								
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad	Save <u>A</u> s							

Figure 3.6 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, the tank has a radius of a = 7 [m] and a height of H = 5 [m], the height of the tank is divided into 50 equal segments. Each segment is 10 [cm] size. To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 3.7. This wizard will guide you through the steps required to generate a FE-Net, the first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of shells. These net templates are used to generate standard nets.

Figure 3.7 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 5 in the "Height" edit box,
- Type 7 in the "Radius" edit box,
- Type 50 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Cylindrical shell" Form appears, Figure 3.8. *ELPLA* divides the height of the tank into 50 equal segments, the user can edit the data of the segments individually by using "Modify" button, or all of them by using "In Table" button, if it is necessary.

-		
lindrical shell:	Segment No. 1 from 53 segments:	
	Segment data:	^
- 4	Start poistion r1 [m]	7.0
<u>د</u>	z1 [m]	0.0
	End position r2 [m]	7.0
	z2 [m]	0.1
	In Table	
	⇔₀	
		<u>M</u> odify
		<u>R</u> efresh
		New
	L	<u>IN</u> CW
		Insert Segment
		<u>D</u> elete Segment
		<u>C</u> opy Segment

Figure 3.8 "Cylindrical shell" Form

Click "Finish" button, the generated FE-Net appears in Figure 3.9.

FE-Net Generation Graphically In table Opening Corners In table Q Zoom In Q Zoom Out In table Q Zoom Out In In table Q Zoom Out In table	^
FE-Net Generation Graphically In table Window Undo Refresh Close	^
7.0	^
	>
X [m] = 14.3 Y [m] = 1.5	

Figure 3.9 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 3.9 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 3.9 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 3.10 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, unit weight of the shell and the filled material properties.

Figure 3.10 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 3.11 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness. Then click "OK" button.

Defining (element group	nd	—		\times		
Group No.	E-Modulus of slab	Poisson's ratio of slab	Slab thickness			<u>0</u> k	
I [-]	[kN/m2]	Nue [-]	d [m]			<u>C</u> ancel	
1	2E+07	0.15	0.25			Insert	
* *						<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	nd to <u>E</u> xce	el
					<u>P</u> as'	te from Ex	cel
						<u>H</u> elp	

Figure 3.11 "Defining element groups" list box

To enter the unit weight of the shell, choose "Unit weight" command from "Shell Properties" menu in the window of Figure 3.10. The following dialog box in Figure 3.12 with a default unit weight of 25 $[kN/m^3]$ appears, Click "OK" button.

Unit weight	×
Unit weight	Gb [kN/m3] 25
<u>O</u> k <u>N</u> ew	<u>C</u> ancel <u>H</u> elp

Figure 3.12 "Unit weight" dialog box

To define the liquid properties of the shell, choose "Filled material type/Element size" command from "Shell Properties" menu in the window of Figure 3.10. The following form in Figure 3.13.

To define the filled material type of the tank:

- Select the "Liquid container" check box,
- Type 5 in the "Height of the liquid" edit box,
- Type 10 in the "Unit weight of the liquid" edit box,

To define the element size of the tank:

- Check the "Constant element sizes in z-direction" check box,
- Type 0.2 in the "Element size in each shell segment" edit box,
- Click "OK" button

illed material type/Element size			>
Filled material type:			
○ Empty container			
 Liquid container 			
⊖ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	5
Unit weight of the liquid	γw	[kN/m3]	10
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	DI		[m] 0.2000 🚔
Ok Cancel			Help

Figure 3.13 "Filled material type/Element size" Form

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 3.10 to save the shell properties
- Choose "Close" command from "File" menu in Figure 3.10 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Supports/ boundary conditions

To define the fixed support, choose "Supports/ Boundary Conditions" command from "Data" Tab. The following window in Figure 3.14 appears.

Figure 3.14 "Supports/ Boundary Conditions" Window

To define supports on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 3.14. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that have the fixed support as shown in Figure 3.15
- After selecting the node, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu (Figure 3.14). The "Supports/ Boundary Conditions" dialog box in Figure 3.16 appears.

Analyzing Axisymmetric Structures and Tanks by ELPLA

Figure 3.15 Selection of node that has a fixed support

In this dialog box

- Type 0 in the "Displacement u" edit box to define the horizontal fixed support
- Type 0 in the "Displacement w" edit box to define the vertical fixed support
- Type 0 in the "Rotation Theta" edit box to define the rotational fixed support
- Click "OK" button

Supports/ Boundary Conditions	×
Node restraints: Displacement Displacement Rotation	u [cm] 0 w [cm] 0 Theta [Rad] 0
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	<< <u>L</u> ess

Figure 3.16 "Supports/ Boundary Conditions" dialog box

Figure 3.17 Supports on the screen

After defining the supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 3.17 to save the data of supports
- Choose "Close" command from "File" menu in Figure 3.17 to close the "Supports/ Boundary conditions" window and return to the main window

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 3.18 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 3.18. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank material, while the hydrostatic pressure on the tank is defined by the unit weight of water.

- 申- S 公式 R 本社 A	elect Nodes Remove Nodal Loads	₩ Edit Nodal Load Remove Member Load	🖳 Nodal loads	C Zoom In C Zoom Out	Zoom Window Zoom % 100	Zoom Upper Right Zoom Lower Left Zoom Upper Left Zoom Lower Right	Undo	Redraw	Close		
	Gra	phically	In table			Window 7.0	Undo	Refresh	Close	 	_
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0											
~											~

Figure 3.18 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 3.18 to save the load data
- Choose "Close" command from "File" menu in Figure 3.18 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 3.19.

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 3.20 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 51 from 153 steps	Cancel

Figure 3.20 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 3.21. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	1374.4
Sum of contact pressures	[kN] =	1374.5
<u>Q</u> k	<u>H</u> elp	

Figure 3.21 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab.

To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 3.22).

) 💣 🛍 ()) 🗟 👼 🕯	i i i 🖉 🔜 🔍 🗎 d	🎒 🌇 🍽 🗢 🛛 ELPLA	- [Tank with fixed base]						-	٥	×
File	Data	Solver	Results Setting	J View	—			1 7					^ 🕐
In Plan	lsometric View	Contour Lines	↓ Isometric View # Result Values ⊣ Distribution Curves	 Circular Diagrams Deformations Principal moments 	 ↑ Support Reactions ▲ Punching Shear ♦ Rotational shell Results ▼ 	Deformation Vectors Principal Strains Deformed Mesh Principal Stresses	Boring Logs/ Boring Limit Depth Location	g Sections in ns shell wall	Display Tables of Data •	Display Tables of Results •			
Fig	ure 3	3.22	"Resu	lts" Tab									

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Support Reactions
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the meridional moments in the shell wall

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 3.23 appears
- In the "Sections in shell wall" option box, select "Meridional moments *My*" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 3.24.

Figure 3.23 "Sections in shell wall" option box

Figure 3.24 Meridional moments sections in shell wall

To view the radial forces on the shell wall

- From "Rotational shell results" command in the "Results" menu, choose "In Plan" command, the following option box in Figure 3.25 appears
- In the "Distribution of Internal Forces" option box, select "Radial forces Nr" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 3.26.

Sections in shell wall		Х
Select itemto display:		
Radial forces Nr	O Meridional forces Ny	
O Meridional moments My		
○ Tangential moments Mt	<u>0</u> k]
◯ Horizontal deformations Vh	Cancel	
○ Vertical deformations Vv		_
O Meridional rotations Vm	<u>H</u> elp	

Figure 3.25 "Distribution of Internal Forces" option box

Figure 3.26 Radial forces on the shell wall

To view element groups of the tank

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 3.27 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 3.27 "Data – In Plan" option box

To view the supports / boundary conditions on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 3.28 appears
- In this check group box, check "Supports Reactions RV" check box
- The user can choose any other data to be displayed
- Click "OK" button

View Grouping	×
Select items to display	
Net numbering	
Coordinates r/z	<u>0</u> k
System of loading	
Supports/Boundary Conditions	Cancel
Rotational shell system	
Radial forces Nr	Help
Meridional moments My	<u>n</u> cip
🗌 Tangential moments Mt 🗸 🗸	Select All
<u>-</u>	

Figure 3.28 "View Grouping" check group box

Analyzing Axisymmetric Structures and Tanks by ELPLA

Figure 3.29 Element groups

Analysis of a reservoir wall with a variable wall thickness

Contents

Page

1	Description of the problem	3
2	Geometry and properties	3
3	Analysis of the reservoir wall	4
4	Creating the project	5
4.1	Calculation method	5
4.2	Project identification	
4.3	FE-Net data	
4.4	Shell properties	
4.5	Supports/ boundary conditions	
4.6	Loads	
5	Carrying out the calculations	22
6	Viewing data and results	24

1 Description of the problem

An example of a reservoir with a variable wall thickness is selected to illustrate some features of *ELPLA* for analyzing shell elements.

2 Geometry and properties

A reservoir wall of a radius a = 100 [m] and a height H = 100.1 [m] is considered as shown in Figure 4.1. The wall of the reservoir has a variable thickness, at the base the thickness is $h_{11} = 13.3$ [m], while at the top the thickness is $h_0 = 4$ [m], thickness in between h [m] can be obtained from the following equation:

$$h = 4e^{\frac{1.2x}{100}}$$

where *x* is the distance from the top in [m].

Figure 4.1 reservoir wall with dimensions

The reservoir wall is exposed to a hydrostatic water pressure and is fixed at the base. The wall material and unit weight of the water are listed in Table 4.1.

Table 4.1	Wall	material	and	water	unit	weight
						0

Modulus of Elasticity of the reservoir wall material	E_c	$= 2.1 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the reservoir wall material	v_c	= 0	[-]
Unit weight of the water	γ_w	= 10	$[kN/m^3]$

3 Analysis of the reservoir wall

In the analysis, the total height of the wall is divided into 11 segments with a constant length; each is (Figure 4.2):

$$\Delta x = \frac{100.10}{11} = 9.10 \ [m]$$

Figure 4.2 Finite element mesh of the reservoir wall with wall thickness

4 Creating the project

In this section, the user will learn how to create a project for analyzing cylindrical shells with variable wall thickness. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 4.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 4.3).

Figure 4.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 4.3, define the analysis type of the problem. As the analysis type is a cylindrical shell with a variable wall thickness problem, select "Analysis of rotational Shell" button, and check "Shell with an opening base" option, then click "Next" button to go to the next Form.

The last Form in the wizard is the "Options" Form, Figure 4.4. In this Form, ELPLA displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Options:	
Slab With Girders	
Addtional Springs	
☑ 🙏 Supports/ Boundary Conditions	
🗌 🌆 Determining Limit Depth	
Concrete Design	
Nonlinear Subsoil Model	
Determining Displacements in Soil	
Determining Stresses in Soil	
Determining Strains in Soil	
Influence of Neighboring Foundations on Raft	
Influence of Lemperature Change on the Raft	
E Salact All	
Select All Ionlinear analysis of niled raft:	
Select All Nonlinear analysis of piled raft:	
Select All Nonlinear analysis of piled raft: Nonlinear analysis using a hyperbolic function for load-settlement	
 Select All Nonlinear analysis of piled raft: Nonlinear analysis using a hyperbolic function for load-settlement Nonlinear analysis using German standard DIN 4014 for load-settlement 	
 Select All Nonlinear analysis of piled raft: Nonlinear analysis using a hyperbolic function for load-settlement Nonlinear analysis using German standard DIN 4014 for load-settlement Nonlinear analysis using German recommendations EA-Piles for load-settlement 	
Select All Nonlinear analysis of piled raft: Nonlinear analysis using a hyperbolic function for load-settlement Nonlinear analysis using German standard DIN 4014 for load-settlement Nonlinear analysis using German recommendations EA-Piles for load-settlement Nonlinear analysis using German recommendations EA-Piles for load-settlement	
 Select All Nonlinear analysis of piled raft: Nonlinear analysis using a hyperbolic function for load-settlement Nonlinear analysis using German standard DIN 4014 for load-settlement Nonlinear analysis using German recommendations EA-Piles for load-settlement Nonlinear analysis using a given load-settlement curve 	
 Select All Nonlinear analysis of piled raft: Nonlinear analysis using a hyperbolic function for load-settlement Nonlinear analysis using German standard DIN 4014 for load-settlement Nonlinear analysis using German recommendations EA-Piles for load-settlement Nonlinear analysis using a given load-settlement curve 	

'Options" Form Figure 4.4

After clicking "Save" button, the "Save as" dialog box appears, Figure 4.5. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Reservoir wall". ELPLA will use automatically this file name in all reading and writing processes.

Save Ar						~
ave As						^
$\leftarrow \rightarrow \checkmark \land \square$	> This PC > Local Disk (D:) > ELPL	A12.2 projects > Tutorial 2	> Example 4		ڻ ~	Search Example 4
Organize 👻 Nev	folder					III 🕶 😮
A Name	^	Date modified	Туре	Size		
				No items match your search.		
8						
-						
~						
File <u>n</u> ame:	Reservoir wall					~
Save as <u>t</u> ype:	solated slab foundation-files (*.PO1)					~
 Hide Folders 						Save Cancel

Figure 4.5 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Reservoir wall] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 4.6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a reservoir wall with a variable wall thickness"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification	×					
Project Id	dentification:						
Title	Analysis of a reservoir wall with a variable wall thickness						
Date	01/12/2021						
Project	Axisymmetric Structures and Tanks						
<u>S</u> ave	e <u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s						

Figure 4.6 "Project Identification" dialog box

4.3 FE-Net data

A reservoir wall of a radius a = 100 [m] and a height H = 100.1 [m] is considered as shown in Figure 4.1. The wall of the reservoir has a variable thickness, at the base the thickness is $h_{11} = 13.3$ [m], while at the top the thickness is $h_0 = 4$ [m], the total height of the wall is divided into 11 segments with a constant length, each 9.10 [m]. To define the FE-Net for this shell, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 4.7. This wizard will guide you through the steps required to generate a FE-Net.

The first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 4.7 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 100.1 in the "Height" edit box,
- Type 100 in the "Radius" edit box,
- Type 11 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Cylindrical shell" Form appears, Figure 4.8. *ELPLA* divides the height of the reservoir wall into 11 equal segments, the user can edit the data of the segments individually by using "Modify" button, or all of them by using "In Table" button, if it is necessary.
Analysis of rotational shell	×
Cylindrical shell:	Segment No. 1 from 14 segments:
z 🖉	Start poistion r1 [m] 100.00000 z1 [m] 0.00000 End position r2 [m] 100.00000 z2 [m] 9.10000 v
	In Table
	<u>M</u> odify <u>R</u> efresh
	<u>N</u> ew <u>I</u> nsert Segment <u>D</u> elete Segment
<u>H</u> elp	< <u>B</u> ack <u>N</u> ext > <u>F</u> inish

Figure 4.8 "Cylindrical shell" Form

Click "Finish" button, the FE-Net appears in Figure 4.9

File FE-Net	Data Edit FE-Net	, ៉ 🦓 🍽 🗢 ELPLA - [Reservoir wall] Setting View RFT Details						- 0	× ^ ?
FE-Net Generation ▼	Slab Corners * P Opening Corners * Reference Corners *	Node Coordinates Propensing Corners Connectivity Nodes Preferences ~ Slab Corners Preferences ~	Coom In Zoom Window Zoom Out Image: Coom Window Image: Coom Out Image: Coom Window <td< th=""><th>Zoom Upper Right Zoom Lower Left Zoom Upper Left Zoom Lower Right</th><th>Undo</th><th>Redraw</th><th>Close</th><th></th><th></th></td<>	Zoom Upper Right Zoom Lower Left Zoom Upper Left Zoom Lower Right	Undo	Redraw	Close		
FE-Net Generation	Graphically	In table		Window	Undo	Refresh	Close		_
100.1 91.00 72.80 63.70 54.60 45.50 36.40 27.30 18.20 9.10									
0.00 < r [m] = 225.03 z [r	m] = 60.49		-	λ					>

Figure 4.9 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 4.9 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 4.9 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the reservoir properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 4.10 appears with default shell properties. The data of reservoir properties for the current example, which are required to be defined, are element groups, group regions, unit weight of the reservoir and liquid properties.

🗮 🗎 📄 💣 造 📦 File Shell Prop	refies Setting	및 🛅 🤀 崎 🏷 (객 〒│ ELPLA - [Reservoir wall] View RFT Details	– <i>a</i>	× ^ ?
Select Elements	Group Regions	Y₀ Unit weight Image: Foundation Level Image: Foundation Depth Image: Filled material type/Element size Image: Foundation Coordinates Shell Properties	Q Zoom In Q Zoom Window Zoom Upper Right Zoom Lower Left Image: Come Come Come Come Come Come Come Come	
		.00	100.00	^
100.1		:		
91.00 81.90				
72.80		1		
63.70				
54.60				
45.50		1		
36.40				
27.30				
18.20				
9.10		0		
0.00		8	3	
< X [m] = 227.65 Y [m]	= 63.63		*	>

Figure 4.10 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 4.11 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thicknesses of the segments as the following list. Then click "OK" button.

Defining e	element group	s (with the sa	me thickness a	nd	_		×
Group No.	E-Modulus of slab Eb	Poisson's ratio of slab	Slab thickness			<u>0</u> k	
i:	[kN/m2]	Nue [-]	d [m]			<u>C</u> ancel	
1	2.1E+07	0	4.231			<u>I</u> nsert	
2	2.1E+07	0	4.719			~	
3	2.1E+07	0	5.2635			<u>с</u> ору	
4	2.1E+07	0	5.871			Delete	
5	2.1E+07	0	6.548			_	
6	2.1E+07	0	7.3035			<u>N</u> ew	
7	2.1E+07	0	8.1465				
8	2.1E+07	0	9.0865		Se	end to <u>E</u> xc	el
9	2.1E+07	0	10.135		Dag	te from Ev	cel
10	2.1E+07	0	11.3045		<u>r</u> as	te nom Ex	(CCI
11	2.1E+07	0	12.6085			<u>H</u> elp	
F #							

Figure 4.11 "Defining element groups" list box

Choose "Group Regions " command from "In table" menu. The following list box in Figure 4.12 appears. In this list box, edit the "Group No." value for each segment. Then click "OK" button.

Group Regio	ons	- 🗆 X
Element No. I [-]	Group No.	<u>0</u> k
1	11	Cancel
2	10	Insert
3	9	
4	8	<u>C</u> opy
5	7	
6	6	Delete
7	5	New
8	4	<u></u> cm
9	3	Send to Excel
10	2	
11	1	Paste from Excel
)-H		<u>H</u> elp

Figure 4.12 "Group Regions" list box

To enter the unit weight of the reservoir, choose "Unit weight" command from "Shell Properties" menu in the window of Figure 4.10. The following dialog box in Figure 4.13 with a default unit weight of 25 [kN/m^3] appears, type 0 in the "Unit weight" edit box to neglect the wall weight in the analysis, then click "OK" button.

Unit weight		×
Unit weight	Gb [kN/m3] 0	
<u>O</u> k <u>N</u>	ew <u>C</u> ancel <u>H</u> el;	p

Figure 4.13 "Unit weight" dialog box

To define the liquid properties of the reservoir, choose "Filled material type/Element size" command from "Shell Properties" menu in the window of Figure 4.10. The following form in Figure 4.14.

To define the filled material properties of the reservoir wall:

- Select the "Liquid container" check box,
- Type 100.1 in the "Height of the liquid" edit box,
- Type 9.81 in the "Unit weight of the liquid" edit box,

To define the element size of the ring wall:

- Check the "Constant element sizes in z-direction" check box,
- Type 9.1 in the "Element size in each shell segment" edit box,
- Click "OK" button

illed material type/Element size			>
Filled material type:			
○ Empty container			
 Liquid container 			
○ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	100.1
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
	D		[m] 0.2000 🔺
Lenien allen eder stell segment			
Ok <u>C</u> ancel			<u>H</u> elp

Figure 4.14 "Liquid properties/Element size" Form

Figure 4.15 "Shell Properties" window after entering the data

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 4.15 to save the shell properties
- Choose "Close" command from "File" menu in Figure 4.15 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Supports/ boundary conditions

To define the fixed support, choose "Supports/ Boundary Conditions" command from "Data" Tab. The following window in Figure 4.16 appears.

Figure 4.16 "Supports/ Boundary Conditions" Window

To define supports on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 4.16. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that has the fixed support as shown in Figure 4.17
- After selecting the node, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu Figure 4.16. The "Supports/ Boundary Conditions" dialog box in Figure 4.18 appears.

Analyzing Axisymmetric Structures and Tanks by ELPLA

Hile Supports	🥳 🎲 🎬 层 🔍 ៉ 🤹 🎮 🏲 (전 국 ELPLA - [Reservoir wall] / Boundary Conditions Setting View RFT Details	- 0 × ^0
▲ Plot Parameters ★ Display Values Options	Eline Formats A Font Fill Color Legend HM Max. Ordinate Format	
	0.00	100.00
27.30		
10.20		
18.20		
9.10		
		Ę
0.00		>
<pre>r[m] = 73.76 z[m]</pre>	= -9.41	

Figure 4.17 Selection of node that has a fixed support

In this dialog box

- Type 0 in the "Displacement u" edit box to define the horizontal fixed support
- Type 0 in the "Displacement w" edit box to define the vertical fixed support
- Type 0 in the "Rotation Theta" edit box to define the rotational fixed support
- Click "OK" button

Supports/ Boundary Conditions	×
Node restraints: Displacement Displacement Rotation	u [cm] 0 w [cm] 0 Theta [Rad] 0
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	<< Less

Figure 4.18 "Supports/ Boundary Conditions" dialog box

🗮 🗋 📄 🚺 📦 🎲 🎲 🎬 🎬 🔜 🔍 🐚 🌳 🏳 (P 🗢 ELPLA - (Reserv	roir wall]			- 0 ×	
File Supports/Boundary Conditions Setting View RFT Details ·	Node restraints Image: Communication of the second secon	e Zoom Window ✓ Zoom Upper Right ✓ Zoom Lower ✓ Move Zoom % 153 ✓ Zoom Lower Right	Left Undo-Plot Parameters	Close	•
Graphically	in table	Window 100.00	Undo Refresh	Close	^
0.00 100.1 91.00 81.90 72.80					^
53.70 534.50		57 57 67			Ì
45.50		ی ۲			
27.30		E21 E31			
9.10		8			
<pre>(<</pre>					>

Figure 4.19 Supports on the screen

After entering supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 4.19 to save the data of supports
- Choose "Close" command from "File" menu in Figure 4.19 to close the "Supports/ Boundary conditions" window and return to the main window

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 4.20 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 4.20. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the reservoir wall material, while the hydrostatic pressure on the reservoir wall is defined by the unit weight of water.

📕 İ 🗋 💕 🚹 🐌 🐗 🧔 File Loads Setti	🧯 🏠 🎬 🛃 🔣 🛍 🕯 ng View RFTD	🗿 🌇 🍋 ∓ ELPLi etails	A - [Reservoir wal	1						- 🗆 × ^ (2)
Select Nodes 선 작 Remove Nodal Loads X 작 Add Nodal Loads Argentic	Edit Nodal Load Remove Member Load Edit Member Load	Nodal loads	 Zoom In Zoom Out Original Size 	Zoom Window Zoom % 123	Zoom Upper Zoom Upper Zoom Lower Window	Right 🥜 Zoom Lower Left Left Right	Undo Undo	Redraw Refresh	Close	
	0.00					100.00				^
100.1	z dz									
91.00										
81.90					N					
72.80										
63.70					7					
<u>54.60</u>										
45.50					10					
36.40										
27.30										
18.20										
9.10					E					
0.00					E					
										~
<pre>X [m] = 203.35 Y [m] = 56.3</pre>	3									>

Figure 4.20 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 4.20 to save the load data
- Choose "Close" command from "File" menu in Figure 4.20 to close the "Loads" window and return to *ELPLA* main window

Creating the project is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 4.21.

Figure 4.21 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 4.22 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 35 from 36 steps	<u>C</u> ancel

Figure 4.22 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 4.23. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	0.0
Sum of contact pressures	[kN] =	0.0
Qk	<u>H</u> elp	

Figure 4.23 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 4.24).

File) 🚅 🛅 🕽 Data	👂 🖼 🥳 🌇 🎦 🔜 🔍 🖄) 🖓 🍽 🗢 ELPLA - [ring wa g View	vali]								-	٥	× ^ ?
In Plan	lsometric View	Contour Lines	Circular Diagrams Circular Diagram	port Reactions Inching Shear	Deformation Vectors Deformed Mesh Principal Stresses	👾 Principal Strains	Boring Logs/ Limit Depth	Boring ocations	Sections in shell wall	Display Tables of Data •	Display Tables of Results •			

The "Results" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Supports Reactions
- Rotational shell Results
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the meridional moments in the shell wall

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 4.25 appears
- In the "Sections in shell wall" option box, select "Meridional moments My" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 4.26.

Sections in shell wall			×
Select itemto display:			
○ Radial forces Nr	O Merid	ional forces Ny	
Meridional moments My			
○ Tangential moments Mt		<u>0</u> k]
◯ Horizontal deformations Vh		Cancel	
○ Vertical deformations Vv			1
O Meridional rotations Vm		<u>H</u> elp	

Figure 4.25 "Sections in shell base" option box

Figure 4.26 Meridional moments in shell wall

To view element groups of the reservoir

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 4.27 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 4.27 "Data – In Plan" option box

To view the supports / boundary conditions on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 4.28 appears
- In this check group box, check both "Supports Reactions *RV*", "Supports Reactions *M*" and "Supports /Boundary Conditions" check box
- The user can choose any other data to be viewed
- Click "OK" button

View Grouping		×	
Select items to display			
System of loading	~		
Supports/Boundary Conditions		<u>O</u> k	
Rotational shell system			
Radial forces Nr		Cancel	
Meridional moments My		_	
Tangential moments Mt		Help	
Meridional forces Ny		<u>H</u> eip	
Support Reactions RV	\mathbf{v}	Select All	
		Beleec All	

Figure 4.28 "View Grouping" check group box

Figure 4.29 Element groups of the reservoir

Analysis of a tank covered with a spherical dome

Contents

Page

1	Description of the problem					
2	Tank geometry and properties					
3	Numerical Analysis					
4	Creating the project	4				
4.1	Calculation method	4				
4.2	Project identification	8				
4.3	FE-Net data	9				
4.4	Shell properties					
4.5	Supports/ boundary conditions					
4.6	Loads					
5	Carrying out the calculations	23				
6	Viewing data and results	25				

1 Description of the problem

An example of an axi-symmetrically circular cylindrical tank covered with a spherical dome roof is selected illustrate some features of *ELPLA* for analyzing shell elements.

2 Tank geometry and properties

Figure 5.1 shows half of an axial section of a large-diameter reinforced concrete circular cylindrical tank covered with a dome roof. The wall connection with the roof is monolithic, while the end of the wall is fixed at the base. Details concerning the geometry of the structure are shown in Figure 5.1. The elastic properties of the tank material are shown in Table 5.1. Only the self-weight is considered in this analysis.

Figure 5.1 Radial section through the tank

Table 5.1 Tank material

Modulus of Elasticity of the tank material	E_c	$= 3 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the tank material	v_c	= 0.16	[-]
Unit weight of the tank material	γ_c	= 25	$[kN/m^3]$

3 Numerical Analysis

In order to analyze the tank, the height of the wall is divided into 50 equal elements, each of 0.20 [m], while the roof shell (dome) is divided into 40 equal arcs each of 0.75 [$^{\circ}$] as shown in Figure 5.2.

Figure 5.2 Finite element mesh of the tank

4 Creating the project

In this section, the user will learn how to create a project for analyzing an axi-symmetrically circular cylindrical tank covered with a spherical dome roof. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 5.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 5.3).

Calculation Method				×
Analysis Type:				
Analysis of slab foundation	Analysis of combined piled raft	Analysis of system of many slab foundations	Analysis of rotational shell	Analysis of axisymmetric stress
	A			
Analysis of slab floor	Analysis of grid	Analysis of plane frame	Analysis of plane stress	
Calculation method:	Rotational s Shell w Shell w Shell w	hell/ 3D-curved shell: ith an opening base ith a floor slab ith a raft foundation		
<u>H</u> elp <u>L</u> oad	Save <u>A</u> s	<u>C</u> ancel	< <u>B</u> ack	ext > Save

Figure 5.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 5.3, define the analysis type of the problem. As the analysis type is a circular cylindrical covered with a spherical dome roof problem, select "Analysis of rotational Shell" button, and check "Shell with an opening base" option, then click "Next" button to go to the next Form.

The last Form in the wizard is the "Options" Form, Figure 5.4. In this Form, ELPLA displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Calculation Method	×
Options: Slab With Girders Additional Springs Supports/ Boundary Conditions Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Stresses in Soil Determining Strains in Soil Image: Influence of Neighboring Foundations on the Raft Image: Influence of Additional Settlements on the Raft	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
○ Nonlinear analysis using German recommendations EA-Piles for load-settlement	
Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next > Save	

Figure 5.4 'Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 5.5. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Tank with covered roof". ELPLA will use automatically this file name in all reading and writing processes.

	→ This PC → Local Disk (D:)	> ELPLA12.2 projects > Tutorial 2 > Ex	kample 5		~	ō	,⊂ Sea	arch Example	5
N	ew folder							E	≣ - (
	Name	Date modified	Туре	Size					
				No items match your search.					
ne:	Tank with covered roof								
pe	lsolated slab foundation-files	(*.PO1)							
							Co.		Cancel

Figure 5.5 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Tank with covered roof] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 5.6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a tank covered with a spherical dome"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X				
Project Id	lentification:				
Title	Analysis of a Tank covered with a spherical dome				
Date	24/12/2021				
Project	ect Axisymmetric Structures and Tanks				
<u>S</u> ave	Cancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s				

Figure 5.6 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, a tank covered with a dome roof has a lower radius of a = 15 [m], a clear height of $H_w = 10$ [m], and the radius of the spherical roof is R = 30.1 [m]. the height of the wall is divided into 50 equal elements, each of 0.20 [m], while the roof shell (dome) of 30[°] is divided into 40 equal arcs each of 0.75 [°] (gives also 40 elements). To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 5.7. This wizard will guide you through the steps required to generate a FE-Net.

The first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 5.7 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net of the tank:

- In the "Shell type" options choose "Irregular shell" button To define the base of the tank:
 - Type 15 in the "Tank base radius *Rb*" edit box

To define the height of the tank:

- Choose "Linear segments" option
- Type 10 in the "height *Hw*" edit box
- Type 15 in the "Upper radius Ro" edit box, as the upper radius is the same as the base radius
- Type 50 in the "Number of segments *Ns*" edit box

To define the roof of the tank:

- Check the "Shell with covered roof" check box
- Choose "Spherical roof" option
- Type 30.10 in the "Radius of the spherical roof" edit box
- Type 30 in the "Angle of the spherical roof" edit box
- Type 40 in the "Number of roof segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Irregular shell" Form appears Figure 5.8, *ELPLA* divides the height of the wall into 50 equal elements, each of 0.20 [m], while the roof shell (dome) is divided into 40 equal arcs each of 0.75 [°], the user can edit the data of the segments individually by using "Modify" button, or all of them by using "In Table" button, if it is necessary.

Click "Finish" in "Analysis of rotational shell" wizard, to generate the FE-Net. The generated FE-Net appears Figure 5.9.

Figure 5.9 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 5.9 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 5.9 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 5.10 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, group regions, unit weight of the tank, and filled material properties.

Figure 5.10 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 5.11 appears. In this list box, define E-Modulus, *Poisson's* ratio and slab thickness for both the tank wall and the tank roof as they differ in thickness. Then click "OK" button.

Defining	element group	s (with the sa	me thickness a	nd	_		\times
Group No.	E-Modulus of slab	Poisson's ratio of slab	Slab thickness			<u>0</u> k	
I [-]	[kN/m2]	Nue [-]	d [m]			<u>C</u> ancel	
1	3E+07	0.16	0.25			<u>I</u> nsert	
2 ▶*	3E+07	0.16	0.15			<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	end to <u>E</u> xce	el
					<u>P</u> as	te from Ex	cel
						<u>H</u> elp	

Figure 5.11 "Defining element groups" list box

Defining the slab thickness for materials on the net may be carried out either graphically or numerically (in a table). In the current example, the user will define the slab thickness on the net graphically.

To define the slab thickness for the tank roof

- Choose "Select Elements" command from "Graphically" menu in the window of Figure 5.10.
- When "Select Elements" command is chosen, the cursor will change from an arrow to a cross hair. A group of elements can be selected by holding the left mouse button down at the corner of the region. Then, drag the mouse until a rectangle encompasses the required group of elements. When the left mouse button is released, all elements in the rectangle are selected
- Select the elements that include the tank roof as Figure 5.12
- Choose "Elements Groups" command from "Graphically" menu in the window of Figure 5.10, "Group Regions" dialog box Figure 5.13 appears
- Define the "Group No." as type "2", while "Group No." of the wall elements will be as type "1", where type "1" is the default "Group No." then click "OK" button

Figure 5.12 Selecting the nodes that include the tank roof

Group Regions	×
Group No.	[-] 2 ~
<u>O</u> k <u>C</u> ancel	Help

Figure 5.13 "Group Regions" dialog box

To enter the unit weight of the tank, choose "Unit weight" command from "Shell Properties" menu in Figure 5.10. The following dialog box in Figure 5.14 with a default unit weight of 25 $[kN/m^3]$ appears, click "OK" button.

Unit weight	×
Unit weight	Gb [kN/m3] 25
<u>O</u> k <u>N</u> ev	w <u>C</u> ancel <u>H</u> elp

Figure 5.14 "Unit weight" dialog box

To define the element size of the shell, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 5.10. The following form in Figure 5.15 appears.

To define the element size of the ring wall:

- Select "Empty container" option
- Check the "Constant element sizes in z-direction" check box
- Type 1 in the "Element size in each shell segment" edit box. The element size is chosen to be 1 [m] larger than the segment size in order to ignore further subdivision of the segments into smaller elements. In some cases, it is necessary to divide the segment into smaller elements in order to make the analysis more precise. Nevertheless, the final results of the internal forces appear only at nodes of segments
- Click "OK" button

illed material type/Element size			2
Filled material type:			
Empty container			
◯ Liquid container			
⊖ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	0.00
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	D	I I	[m] 1 🛉
<u>O</u> k <u>C</u> ancel			<u>H</u> elp

Figure 5.15 "Liquid Properties/Element size" dialog box

Figure 5.16 "Shell Properties" window after defining the shell data

After entering the tank properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 5.16 to save the shell properties
- Choose "Close" command from "File" menu in Figure 5.16 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Supports/ boundary conditions

To define the support, choose "Supports/ Boundary Conditions" command from "Data" Tab. The following window in Figure 5.17 appears.

Figure 5.17 "Supports/ Boundary Conditions" Window

To define the support on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 5.17. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that has the fixed support as shown in Figure 5.18
- After selecting the node, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu (Figure 5.17). The "Supports/ Boundary Conditions" dialog box in Figure 5.19 appears.

Figure 5.18 Selection of the node that has the fixed support

In this dialog box

- Type 0 in the "Displacement u" edit box to define the horizontal fixed support
- Type 0 in the "Displacement w" edit box to define the vertical fixed support
- Type 0 in the "Rotation Theta" edit box to define the rotational fixed support
- Click "OK" button

Supports/ Boundary Conditions	×
Node restraints: Displacement Displacement Rotation	u [cm] 0 w [cm] 0 Theta [Rad] 0
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	<< <u>L</u> ess

Figure 5.19 "Supports/ Boundary Conditions" dialog box

Figure 5.20 "Supports/ Boundary Conditions" window after defining the support

After defining the supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 5.20 to save the data of supports
- Choose "Close" command from "File" menu in Figure 5.20 to close the "Supports/ Boundary conditions" window and return to the main window

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 5.21 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 5.21. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank.

		•
Image: Selecting view Relations Image: Relations		
Graphically In table Window Undo Refresh Close 0.00[0.74]1.53[2.31]3.10]3.88[4.66]5.44[6.21]6.98]7.74[8.50]9.25[10.0]0.741.472.192.13.624.315.00	 _	^
		*
< X[m] = 23.09 Y [m] = 12.09		>

Figure 5.21 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 5.21 to save the load data
- Choose "Close" command from "File" menu in Figure 5.21 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 5.22.

Figure 5.22 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 5.23 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 35 from 36 steps	<u>C</u> ancel

Figure 5.23 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 5.24. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	8743
Sum of contact pressures	[kN] =	8743
<u>0</u> k	<u>H</u> elp	

Figure 5.24 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 5.25).

Il Isometric View • Circular Diagrams 📅 Support Reactions • Deformation Vectors • Principal Strains	File	Data	🔊 📾 📸 🎬 🎬 🔜 🔍 🕍 i Solver Results Settir	응 🏹 (객 국 ELPLA - [Ring wall with ng View	variable wall thickness]					-	٥	× ^ (?)
In Isometric Plan View View View View View View View View	In Plan	lsometric View	Contour Lines I Isometric View ## Result Values	Circular Diagrams FT Support Rea Deformations Principal moments Principal moments	actions Deformation Vectors hear Deformed Mesh shell Results Principal Stresses	Principal Strains	ogs/ Boring Se both Locations sl	ctions in hell wall	les Display Tables			

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Support Reactions
- Sections in shell wall
- Display tables of data
- Display tables of results

To view element groups of the tank

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 5.25 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 5.26 "Data – In Plan" option box

To view the supports / boundary conditions on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 5.27 appears
- In this check group box, check "Supports Reactions *Rv*", "Supports Reactions *Rh*", "Supports Reactions *Rm*", "Supports /Boundary Conditions", "Meridional moments *My*" check boxes
- The user can choose any other data to be viewed
- Click "OK" button

Figure 5.28 Element groups of the tank

Analysis of a tank resting on *Winkler's* medium

Contents

Page

1	Description of the problem	3
2	Tank geometry and properties	3
3	Numerical Analysis	4
4	Creating the project	4
4.1	Calculation method	
4.2	Project identification	9
4.3	FE-Net data	9
4.4	Shell properties	
4.5	Soil Properties	
4.6	Loads	
5	Carrying out the calculations	19
6	Viewing data and results	21

1 Description of the problem

An example of an axi-symmetrically circular cylindrical tank resting on elastic foundation using *Winkler's* model is selected to illustrate some features of *ELPLA* for analyzing shell elements.

2 Tank geometry and properties

A circular cylindrical tank of an inner diameter of d = 13 [m] and a height of H = 3.5 [m] is considered as shown in Figure 6.1. Thickness of the tank wall is t = 0.175 [m]. The tank is filled with water. The soil under the base of the tank is represented by isolated springs of stiffness k_s , which represent modulus of subgrade reaction. The tank material, unit weight of the water and the modulus of subgrade reaction are listed in Table 6.1.

Figure 6.1 Circular cylindrical tank resting on isolated springs with dimensions

Table 6.1 Tank material, water unit weight and modulus of subgrade reaction

Modulus of Elasticity of the tank material	E_c	$= 2 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the tank material	v_c	= 0.2	[-]
Unit weight of the tank material	γ_c	= 25	$[kN/m^3]$
Unit weight of the water	γ_w	= 10	$[kN/m^3]$
Modulus of subgrade reaction	k_s	$= 100\ 000$	$[kN/m^3]$

3 Numerical Analysis

In order to analyze the tank, the height of the tank is divided into 35 equal segments, each of 0.10 [m], as shown in Figure 6.2. The base of the tank is divided into 50 equal segments, each of 0.13 [m].

Figure 6.2 Finite element mesh of the tank

4 Creating the project

In this section, the user will learn how to create a project for analyzing an axi-symmetrically circular cylindrical tank resting on elastic foundation using *Winkler's* model. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 6.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 6.3).

Calculation Method				×
Analysis Type:				
Analysis of slab foundation	Analysis of combined piled raft	Analysis of system of many slab foundations	Analysis of rotational shell	Analysis of axisymmetric stress
	A			
Analysis of slab floor	Analysis of grid	Analysis of plane frame	Analysis of plane stress	
Calculation method:	Rotational s Shell w Shell w Shell w	shell/ 3D-curved shell: ith an opening base ith a floor slab ith a raft foundation		
<u>H</u> elp <u>L</u> oad	Save <u>A</u> s	Cancel	< <u>B</u> ack <u></u>	lext > Save

Figure 6.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 6.3, define the analysis type of the problem. As the analysis type is a circular cylindrical tank problem, select "Analysis of rotational Shell" button, and check "Shell with a raft foundation" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Calculation Methods" Form appears, Figure 6.4.

To define the calculation method:

- Select the calculation method "2/3 Constant/ Variable Modulus of Subgrade Reaction"
- To determine the modulus of subgrade reaction, select "Modulus is defined by the user"
- Click "Next" button to go to the next Form

Calculation Method	×
Calculation Method:	
O 1- Linear Contact Pressure (Conventional Method)	
● 2/3- Constant/Variable Modulus of Subgrade Reaction	
○ 4- Modification of Modulus of Subgrade Reaction by Iteration	
○ 5- Isotropic Elastic Half Space	
○ 6- Modulus of Compressibility (Iteration)	
○ 7- Modulus of Compressibility (Elimination)	
🚫 8- Modulus of Compressibility for Rigid Raft	
○ 9-Flexible Foundation	
Determining Modulus of Subgrade Reaction:	
O Modulus is calculated from half space	
O Modulus is calculated from soil layers	
Modulus is defined by the user	
	_
Heip Load Save As Cancel < Back Next > Save	3

Figure 6.4 "Calculation Method" Form

The last Form in the wizard is the "Options" Form, Figure 6.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Since no option will be considered in the analysis, click the "Save" button.

Iculation Method	
Select All	
Ionlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
) Nonlinear analysis using German standard DIN 4014 for load-settlement	
) Nonlinear analysis using German recommendations EA-Piles for load-settlement	
) Nonlinear analysis using a given load-settlement curve	

After clicking "Save" button, the "Save as" dialog box appears, Figure 6.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Tank on Winkler's medium". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As				×
← → • ↑	« ELPLA12.2 projects » Tutorial 2 ;	Example 6 🗸 🗸 🗸	ට 🔎 Search	Example 6
Organize 🔻 Ne	ew folder			::: - ?
↑ Name	^	Date modified	Туре	Size
	Ν	o items match your search.		
~				
File <u>n</u> ame:	Tank on Winkler's medium			~
Save as <u>t</u> ype:	Isolated slab foundation-files (*.PO1)			~
∧ Hide Folders			<u>S</u> ave	Cancel

Figure 6.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Tank on *Winkler's* medium] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 6.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box:
- "Analysis of a tank resting on *Winkler's* medium"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X	
Project Io	dentification:	
Title	Analysis of a tank resting on Winkler's medium	
Date	02/12/2021	
Project	Axisymmetric Structures and Tanks	
<u>S</u> ave	e <u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s	

Figure 6.7 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, the tank has an inner diameter of d = 13 [m] and a height of H = 3.5 [m]. the tank height is divided into 35 equal segments, each of 0.10 [m], where the base of the tank is divided into 50 equal segments, each of 0.13 [m]. To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 6.8. This wizard will guide you through the steps required to generate a FE-Net.

The first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 6.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 3.5 in the "Height" edit box
- Type 6.5 in the "Radius" edit box
- Type 35 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Cylindrical shell" Form appears Figure 6.9, *ELPLA* divides the height of the tank into 35 equal segments, the user can edit the data of the segments individually by using "Modify" button, or all of them by using "In Table" button, if it is necessary.

drical shell:	
	Segment No. 1 from 38 segments:
	Segment data:
- 1	Start poistion r1 [m] 6.500
2.β	z1 [m] 0.000
	End position r2 [m] 6.500
	z2 [m] 0.100
	In Table
	⊳.
	- R
	R
	T R
	F R
	R <u>M</u> odify
	<u>M</u> odify <u>R</u> efresh
	<u>M</u> odify <u>R</u> efresh <u>N</u> ew
	<u>M</u> odify <u>R</u> efresh <u>N</u> ew <u>I</u> nsert Segment
	<u>M</u> odify <u>R</u> efresh <u>N</u> ew <u>I</u> nsert Segment <u>D</u> elete Segment
	<u>Modify</u> <u>R</u> efresh <u>N</u> ew <u>I</u> nsert Segment <u>D</u> elete Segment <u>C</u> opy Segment

Figure 6.9 "Cylindrical shell" Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Net of Base" Form appears Figure 6.10.

To edit the grid spacing in *x*-direction, do the following steps in "Grid in *x*-direction" frame:

- Choose "Constant grid interval" check box
- Type 50 in the "No. of grid intervals" edit box

Figure 6.10 "Net of Base" Form

Click "Finish" button, the FE-Net of the tank wall and a sector from the base appear in Figure 6.11

Figure 6.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 6.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 6.11 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 6.12 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, unit weight of the tank, and filled material properties.

😸 🗋 💕 🛅 🗭 🐗 🎲 🎬 🛃 File Shell Properties Setting	晟 🎽 🎲 🌑 (객 후 │ ELPLA - [Tank on Winkler's medium] View RFT Details			- 0	× ^ ?
Select Elements Element groups	℃ Unit weight Image:	Q Zoom In Q Zoom Window Zoom Upper Right Zoom Lower Left Q Zoom Out 20 Move Coom Upper Left Q Original Size Zoom Son Lower Right	Undo Redraw Close		
Graphically In table	Shell Properties	Window	Undo Refresh Close		
0.00 0.0 3.00 0					
X [m] = 11.98 Y [m] = 3.23	<u>┶╞╾╕┶╞┶╞╼╞╼╞┙╞╞╞┍╞</u> ╞╞╞╕╕╕╕╕╕╕╕				>

Figure 6.12 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 6.13 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness. Then click "OK" button.

efining	element group	s (with the sa	me thickness a	nd	-		×
Group No.	E-Modulus of slab Eb	Poisson's ratio of slab	Slab thickness			<u>0</u> k	
-]	[kN/m2]	Nue [-]	d [m]			<u>C</u> ancel	
/ 1	2E+07	0.2	0.175			Insert	
•						<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	nd to <u>E</u> xce	el
					<u>P</u> ast	te from Ex	cel

Figure 6.13 "Defining element groups" list box

To enter the unit weight of the tank, choose "Unit weight" command from "Shell Properties" menu in Figure 6.12. The following dialog box in Figure 6.14 with a default unit weight of 25 $[kN/m^3]$ appears, click "OK" button.

Unit weight	>	<
Unit weight	Gb [kN/m3] 25	
<u>O</u> k	<u>l</u> ew <u>C</u> ancel <u>H</u> elp]

Figure 6.14 "Unit weight" dialog box

To define the liquid properties of the shell, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 6.12. The following form in Figure 6.15 appears.

To define the liquid properties of the tank:

- Select the "Liquid container" option
- Type 3.5 in the "Height of the liquid" edit box
- Type 10 in the "Unit weight of the liquid" edit box

To define the element size of the tank:

- Check the "Constant element sizes in z-direction" check box
- Type 1 in the "Element size in each shell segment" edit box. The element size is chosen to be 1 [m] larger than the segment size in order to ignore further subdivision of the segments into smaller elements. In some cases, it is necessary to divide the segment into smaller elements in order to make the analysis more precise. Nevertheless, the final results of the internal forces appear only at nodes of segments
- Click "OK" button

Filled material type/Element size			×
Filled material type: O Empty container O Liquid container O Granular material container			
Liquid Properties: Height of the liquid Unit weight of the liquid	HI YW	[m] [kN/m3]	3.5 10
Granular material properties: Top height of the granular material Bottom height of the granular material Unit weight of the granular material Angle of internal friction of the granular material Angle of the wall friction	H1 H2 γs Φ δ	[m] [m] [kN/m3] [°]	0.00 0.00 15.50 25 20
Element size: Constant element sizes in z-direction Element size in each shell segment <u>Ok</u> <u>C</u> ancel	DI		[m] 1 🜩

Figure 6.15 "Liquid properties/Element size" Form

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 6.12 to save the shell properties
- Choose "Close" command from "File" menu in Figure 6.12 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Soil Properties

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" form in Figure 6.16 appears, enter the modulus of subgrade reaction of the soil and the ground water depth under the ground surface. Other data for this example is not required.

Soil data			
Modulus of subgrade reaction	k_s	$= 100\ 000$	$[kN/m^3]$
Ground water depth under the surface	Gw	= 1	[m]

Soil Proper	ties						-		×
Boring	Boring	X-coordinate	Y-coordinate	Moduli of subgrade	Ultimate bearing			<u>S</u> ave	
log No. I	Log Label	of boring [m]	of boring [m]	reactions ks [kN/m3]	capacity Qul [kN/m2]			<u>C</u> ancel	
1	BPN1	0.000	0.000	100000	0			Insert	
F #								<u>С</u> ору	
								<u>D</u> elete	
								<u>L</u> oad	
								<u>N</u> ew	
							<u>P</u> a:	ste from I	Excel
							S	end to <u>E</u> x	cel
Groundwat	ter:							Save <u>A</u> s.	
Groundwa	ater depthund	er the ground surf	ace	(Gw [m] 1.00	-		<u>H</u> elp	

Figure 6.16 "Soil Properties" Form

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 6.17 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" tab in Figure 6.17. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank, while the hydrostatic pressure on the tank wall is defined by the unit weight of water.

- 曲- Select Nodes X Remove Nodal Loads 책 Add Nodal Loads	✓ Edit Nodal Load	H Nodal loads	Q Zoom In Q Zoom Window Zoom Q Zoom Out X Move Zoom Q Original Size Zoom % 111 Zoom	Upper Right 🖉 Zoom Lower Left 🔰 Upper Left Ur Lower Right Ur	S Jndo	Redraw	Close	
Grap	phically	In table	Window	U	Jndo	Refresh	Close	
5.0 4.8 4.6 4.4 4.2 4.1	₫ <u>.</u>							
3.8 3.6 3.4 3.2 2.8 2.6 2.4								ł
2.2 2.0 1.8 1.6								
0.0				- - -R				~
< X [m] = 13.3 Y [m] = 3	.2							>

Figure 6.17 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 6.17 to save the load data
- Choose "Close" command from "File" menu in Figure 6.17 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 6.18.

Figure 6.18 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining the modulus of subgrade reaction
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 6.19 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Assembling the slab stiffness matrix	
Assembling slab stiffness matrix	
Time remaining = 00:00:00	
I = 74 from 85 steps	
	<u>C</u> ancel

Figure 6.19 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 6.20. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	5851.0
Sum of contact pressures	[kN] =	5837.6
<u>0</u> k	<u>H</u> elp	

Figure 6.20 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab.

To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 6.21).

File Data Solver Results Setting View Image: Solver I Isometric View Circular Diagrams T Support Reactions Deformation Vectors Principal Strains Image: Solver Image: Solver	- 0	\times
Image: Second state Isometric View Circular Diagrams The Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Reactions Support Support Reactions Support R		^ ?
In Isometric Contour Plan View Lines H Distribution Curves X Principal moments Hereautes + Rotational shell Results + Principal Stresses Boring Logs/ Boring Sections in Sections in Sections in Sections of Display Tables of Data + of Results +	Sections in Sections in shell wall shell base	

Figure 6.21 "Results" Tab

The "Results" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Sections in shell wall
- Sections in shell base
- Display tables of data
- Display tables of results

To view the radial forces in the shell wall

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 6.22 appears
- In the "Sections in shell wall" option box, select "Radial forces *Nr*" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 6.23.

Sections in shell wall		>	×
Select itemto display:			
Radial forces Nr	O Merid	lional forces Ny	
O Meridional moments My			
○ Tangential moments Mt		<u>0</u> k	
O Horizontal deformations Vh		Cancel	
○ Vertical deformations Vv			
O Meridional rotations Vm		<u>H</u> elp	

Figure 6.22 "Sections in shell wall" option box

Figure 6.23 Radial forces in shell wall

To view the meridional moments on the shell wall

- From "Rotational shell results" command in the "Results" menu, choose "In Plan" command, the following option box in Figure 6.24 appears
- In the "Distribution of Internal Forces" option box, select "Meridional moments My" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 6.23.

Distribution of Internal Forces			×	
Select one item to draw:				
○ Radial forces Nr ○ Meridional forces Ny				
Meridional moments My	◯ Tangential moments Mt			
O Horizontal deformations Vh		<u>0</u> k]	
○ Vertical deformations Vv		<u>C</u> ancel	1	
O Meridional rotations Vm			1	
○ Shell deformation Delta		<u>H</u> elp		

Figure 6.24 "Distribution of Internal Forces" option box

Figure 6.25 Meridional moments on the shell wall

Analysis of a tank with a conical base resting on *Winkler's* medium

Contents

Page

1	Description of the problem	
2	Loads	3
3	Numerical Analysis	4
4	Creating the project	4
4.1	Calculation method	
4.2	Project identification	9
4.3	FE-Net data	9
4.4	Shell properties	
4.5	Soil Properties	
4.6	Loads	
4.7	Spring Supports	
5	Carrying out the calculations	25
6	Viewing data and results	27

1 Description of the problem

An example of a circular cylindrical tank with a conical base resting on elastic foundation using *Winkler's* model is selected to illustrate some features of *ELPLA* for analyzing circular cylindrical shell elements.

2 Loads

A circular cylindrical tank of an inner diameter of d = 15 [m] and a height of H = 6 [m] is considered as shown in Figure 7.1. Thickness of the tank wall is t = 0.5 [m]. The tank is filled with water. The soil under the base of the tank is represented by isolated springs of stiffness k_s , which represent modulus of subgrade reaction. Figure 7.1 shows the tank with dimensions, while the tank material, unit weight of the water and the modulus of subgrade reaction are listed in Table 7.1.

Figure 7.1 Circular cylindrical tank on isolated springs with dimensions

 Table 7.1
 Tank material, water unit weight and modulus of subgrade reaction

Modulus of Elasticity of the tank material	E_c	$= 2 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the tank material	v_c	= 0.2	[-]
Unit weight of the tank material	γ_c	= 25	$[kN/m^3]$
Unit weight of the water	γ_w	= 10	$[kN/m^3]$
Modulus of subgrade reaction	k_s	$= 100\ 000$	$[kN/m^3]$

3 Numerical Analysis

In the analysis, the height of the tank is divided into 20 equal elements, each of 0.30 [m], as shown in Figure 7.2. The conical base of the tank is divided into 17 equal elements.

Figure 7.2 Finite element mesh of the tank

4 Creating the project

In this section, the user will learn how to create a project for analyzing an axi-symmetrically circular cylindrical tank resting on elastic foundation using *Winkler's* model. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 7.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 7.3).

Calculation Method				×
Analysis Type:				
Analysis of slab foundation	Analysis of combined piled raft	Analysis of system of many slab foundations	Analysis of rotational shell	Analysis of axisymmetric stress
	#			
Analysis of slab floor	Analysis of grid	Analysis of plane frame	Analysis of plane stress	
Calculation method:	Rotational s Shell w Shell w Shell w	hell/ 3D-curved shell: ith an opening base ith a floor slab ith a raft foundation		
<u>H</u> elp <u>L</u> oad	Save <u>A</u> s	<u>C</u> ancel	< <u>B</u> ack	ext > Save

Figure 7.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 7.3, as the analysis type is a circular cylindrical tank problem, select "Analysis of rotational Shell" button and check "Shell with a raft foundation" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Calculation Methods" Form appears, Figure 7.4.
To define the calculation method:

- Select the calculation method "2/3 Constant/ Variable Modulus of Subgrade Reaction"
- To determine the modulus of subgrade reaction, select "Modulus is defined by the user"
- Click "Next" button to go to the next Form.

Calculation Method	×
Calculation Method:	
🔿 1- Linear Contact Pressure (Conventional Method)	
② 2/3- Constant/Variable Modulus of Subgrade Reaction	
O 4- Modification of Modulus of Subgrade Reaction by Iteration	
○ 5- IsotropicElasticHalf Space	
○ 6- Modulus of Compressibility (Iteration)	
○ 7- Modulus of Compressibility (Elimination)	
🔘 8- Modulus of Compressibility for Rigid Raft	
○ 9-Flexible Foundation	
Determining Modulus of Subgrade Reaction:	
○ Modulus is calculated from half space	
○ Modulus is calculated from soil layers	
Modulus is defined by the user	
Help Load Save As Cancel < Back Next > Save	

Figure 7.4 "Calculation Method" Form

The last Form in the wizard is the "Options" Form, Figure 7.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Additional Springs", then click the "Save" button.

Calculation Method	X
Options: Slab With Girders Additional Springs Supports/ Boundary Conditions Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Stresses in Soil Determining Strains in Soil Image: Tinfluence of Neighboring Foundations on the Raft Image: Influence of Additional Settlements on the Raft	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔘 Nonlinear analysis using German standard DIN 4014 for load-settlement	
🔿 Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next > Save	3

Figure 7.5 "Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 7.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Conical Tank". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As									×	<
← → • ↑ <mark> </mark>	> This PC > Local Disk (D:) > EL	PLA12.2 projects > Tutorial	2 > Example 7				ч <u>с</u>	, Search Examp	le 7	
Organize 🔻 Ne	v folder								⊪ • ?	
^ Name	^	Date modified	Туре	Size						
				No item	s match your search.					
~										
File <u>n</u> ame:	Conical Tank									1
Save as <u>t</u> ype:	Isolated slab foundation-files (*.PO1	1)							~	1
∧ Hide Folders								<u>S</u> ave	Cancel	

Figure 7.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Conical Tank] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 7.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box:
- "Analysis of a tank with conical base resting on Winkler's medium"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X
Project Io	lentification:
Title	Analysis of a tank with conical base resting on Winkler's medium
Date	21/12/2021 ~
Project	Axisymmetric Structures and Tanks
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s

Figure 7.7 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, a cylindrical water container with a conical base of a radius of a = 7.5 [m] and a height of H = 6 [m] is considered, the height of the tank is divided into two main segments, the main segment of the wall is divided into 20 elements (20×0.3 [m]), while the conical part is divided into 17 elements.

To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 7.8. This wizard will guide you through the steps required to generate a FE-Net, the first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 7.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Irregular shell" button
- Type 0.6 in the "Radius of the tank base" edit box,

To identify the foundation segment

- Type 0.6 in the "Height" edit box Type 0.6 in the "Upper radius" edit box
- Type 3 in the "Number of segments" edit box

To identify the segment of the conical part

- Type 0.85 in the "Height" edit box •
- •
- Type 7.5 in the "Upper radius" edit box Type 17 in the "Number of segments" edit box •

To identify the segment of the tank height

- Type 6 in the "Height" edit box •
- Type 7.5 in the "Upper radius" edit box Type 20 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Irregular shell" Form containing the data of the segments appears in Figure 7.9, The user can edit the data of each segment individually or all of them by using "In Table" button.

Irregular shell:				
		Segment No. 1 from	n 43 segmer	nts:
		Segment data:		^
z A		Start poistion	r1 z1	[m] 0.60
		End position	r2	[m] 0.60
			z2	[m] 0.20 ¥
			To Table	
			In Table	
	R			<u>R</u> efresh
				New
				Insert Segment
				Delete Segment
				<u>C</u> opy Segment
Help		< Back	Marchin	ri-i-h

Figure 7.9 "Irregular shell" Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Net of Base" Form appears Figure 7.10.

To edit the grid spacing in *x*-direction of the tank foundation, do the following steps in "Grid in *x*-direction" frame:

- Choose "Constant grid interval" check box
- Type 10 in the "No. of grid intervals" edit box

Analysis of rotational shell	
Net of Base	
Y A	Grids in x-direction: Constant grid interval Constant ring area Variable grid interval No. of grid intervals Grid Intervals Refresh Geometry Radius Ru [m] 0.60
<u>H</u> elp	< <u>B</u> ack <u>Next</u> > <u>F</u> inish

Figure 7.10 "Net of Base" Form

Click "Finish" button, the FE-Net of the wall and a sector from the base appears in Figure 7.11

🗄 I 🗋 💕 🐌 📦 I	in 16 16 18 🗟 🗟	📓 🏟 🎝 🍽 👳					_	٥	×
File FE-Net Dat	ta Edit FE-Net	Setting View RFT Details						~	()
FE-Net Generation •	Slab Corners * Opening Corners * Reference Corners *	Node Coordinates Provide Corners	Coom In Image: Coom Wind Coom Out Image: Coom Wind Image: Coom Wind Image: Coom Wind Image: Coom Wind Image: Coom Win	ow Zoom Upper Right Zoom Lower Left Zoom Upper Left Joom Lower Right	Undo Redraw	Close			
FE-Net Generation	Graphically	In table		Window	Undo Refresh	Close			
	000000000000000000000000000000000000000								^
7.00	¢								
5.50									
4.00									
2.50									
1.50 1.25 1.00 0.75									
0.00									*
<pre>r [m] = 5.10 z [m] =</pre>	3.29								>

Figure 7.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 7.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 7.11 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 7.12 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, unit weight of the tank, and the filled material properties.

Figure 7.12 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 7.13 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness. Then click "OK" button.

Group No.	E-Modulus of slab	Poisson's ratio of slab	Slab thickness			<u>0</u> k	
: [-]	ED [kN/m2]	Nue [-]	d [m]			<u>C</u> ancel	
1	2E+07	0.2	0.5			<u>I</u> nsert	
*						<u>C</u> opy	
						<u>D</u> elete	
				l		<u>D</u> elete <u>N</u> ew	
				l	Ser	<u>D</u> elete <u>N</u> ew nd to <u>E</u> xcel	
				l	Ser Pasto	Delete New nd to Excel	el

Figure 7.13 "Defining element groups" list box

To enter the unit weight of the tank, choose "Unit weight" command from "Shell Properties" menu in Figure 7.12. The following dialog box in Figure 7.14 with a default unit weight of 25 [kN/m^3] appears, click "OK" button.

Unit weight			×
Unit weight		Gb [kN/m3] 25
<u>0</u> k	New	<u>C</u> ancel	<u>H</u> elp

Figure 7.14 "Unit weight" dialog box

To define the filled material properties of the tank, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 7.12. The following form in Figure 7.15 appears.

To define the filled material properties of the Tank:

- Select "Liquid container" option
- Type 6.85 in the "Height of the liquid" edit box
- Type 9.81 in the "Unit weight of the liquid" edit box

To define the element size of the tank:

- Check the "Constant element sizes in z-direction" check box
- Type 0.2 in the "Element size in each shell segment" edit box
- Click "OK" button

Filled material type/Element size			×
Filled material type:			
○ Empty container			
 Liquid container 			
○ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	6.85
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	D	I	[m] 0.2000 🚖
<u>O</u> k <u>C</u> ancel			<u>H</u> elp

Figure 7.15 "Liquid properties/Element size" Form

After defining the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 7.12 to save the shell properties
- Choose "Close" command from "File" menu in Figure 7.12 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Soil Properties

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" form in Figure 7.16 appears, enter Modulus of subgrade reaction of the soil and the ground water under the surface. Other data in the example are not required.

Soil data:

Aodulus of subgrade reaction Ground water depth under the surface					ks Gw	$= 100\ 000$ = 1	[kN/ m ³] [m]	
Soil Proper	ties						- 🗆	×
Boring log No. I	Boring Log Label	X-coordinate of boring [m]	Y-coordinate of boring [m]	Moduli of subgrade reactions ks	Ultimate bearing capacity Qul		<u>S</u> ave <u>C</u> ancel	
1	BPN1	0.00	0.00	100000	0		<u>I</u> nsert	
▶ #							<u>C</u> opy	
							<u>D</u> elete	
							<u>L</u> oad	
							New	
							<u>P</u> aste from E	Excel
							Send to <u>E</u> x	cel
Groundwa	ter:						Save <u>A</u> s.	
Groundwa	ater depth und	ler the ground surf	ace	(Gw [m] 1.0	0	<u>H</u> elp	

Figure 7.16 "Soil Properties" form

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 7.17 appears.

In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 7.17. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank, while the hydrostatic pressure on the tank wall is defined by the unit weight of water.

■ 1 10 10 16 </th <th>- 6</th> <th>p</th> <th>× (?)</th>	- 6	p	× (?)
Graphically In table Window Undo Refresh Close			_
			^
			~
< X [m] = 16.51 Y [m] = 4.05			>

Figure 7.17 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 7.17 to save the load data
- Choose "Close" command from "File" menu in Figure 7.17 to close the "Loads" window and return to *ELPLA* main window

4.7 Spring Supports

To define the Spring supports, choose "Spring Supports" command from "Data" Tab. The following window in Figure 7.18 appears.

📇 I 🗋	💕 🖞 🔛 🕷 🐗 " 🖺 🖫	에 Ra 🙆 🐵 🏷 (제 후 I	o >	<
File	Spring Supports Setting	ng View RFT Details	^	?
Select Nodes	 Remove Spring Supports Add Spring Supports Edit Spring Support Graphically 	Image: Spring Supports Q Zoom In @ Zoom Window Zoom Upper Right Zoom Lower Left Image: Spring Supports Image: Sprin		
				^
7.00 ⁻ - 5.50 ⁻				
4.00				l
2.50	- 1477 ABA - 1444 HAL - 1477 ABA - 1477 ABA			
1.30 1.25 1.00 0.75				
0.00		<u></u> *		~
X [m] = 1	3.48 Y [m] = 3.86			>

Figure 7.18 "Spring Supports" Window

To define the spring supports on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 7.18. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that has the spring support as shown in Figure 7.19
- After selecting the nodes, choose "Add Spring Supports" command from "Graphically" menu (Figure 7.18). The "Edit Spring Support" dialog box in Figure 7.20 appears.

Example 7

Figure 7.19 Selection of the nodes that have the spring support

Figure 7.20 "Edit Spring Support" dialog box

Figure 7.21 "Edit Spring Support" dialog box

Example 7

Edit Spring Support		×
Horizontal spring Vertical spring Rotational spring	kh [kN/m/m] kv [kN/m/m] kt [Rad.m/Rad/m]	0 20006 0
<u>Ok</u> <u>C</u> ancel <u>H</u> elp		<< <u>L</u> ess
$k_{\mathbf{k}}$		

Figure 7.22 "Edit Spring Support" dialog box

Figure 7.23 "Spring Supports" window after defining the springs

After defining the spring supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 7.23 to save the data of the springs
- Choose "Close" command from "File" menu in Figure 7.23 to close the "Spring Supports" window and return to the main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 7.24.

Figure 7.24 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining the modulus of subgrade reaction
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 7.25 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Assembling the slab stiffness matrix	
Assembling slab stiffness matrix	
I = 1 from 75 steps	Cancel

Figure 7.25 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 7.26. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	15686
Sum of contact pressures	[kN] =	15778
<u>O</u> k	<u>H</u> elp	

Figure 7.26 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab.

To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 7.27).

📇 I () 🖆 🛍 ()) 🗟 🖓	'i 'i 🛛 🔍 🗎 d	🎒 🌇 🧨 🖛 🗄 ELPLA	- [Conical Tank]									- 6	×
File	Data	Solver	Results Setting	g View RFT D	etails										^ ?
In Plan	lsometric View	Contour Lines	Isometric View ₩ Result Values → Distribution Curves	 Circular Diagrams Deformations Principal moments 	TT Support Reactions ▲ Punching Shear → Rotational shell Results ▼	Support Stresses	👾 Principal Strains	Boring Logs/ Limit Depth	Boring Locations	Sections in shell wall	Sections in shell base	Display Tables of Data •	Display Tables of Results •		
Plan	View	Lines F	Distribution Curves	× Principal moments	Rotational shell Results •	+		Limit Depth	Locations	shell wall	shell base	of Data 🕶	of Results •		

Figure 7.27 "Results" Tab

The "Results" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Sections in shell wall
- Sections in shell base

To view the radial forces in the shell wall:

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 7.28 appears
- In the "Sections in shell wall" option box, select "Radial forces Nr" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 7.29.

Sections in shell wall		×
Select itemto display:		
Radial forces Nr	○ Merid	ional forces Ny
O Meridional moments My		
○ Tangential moments Mt		<u>0</u> k
◯ Horizontal deformations Vh		<u>C</u> ancel
○ Vertical deformations Vv		
O Meridional rotations Vm		<u>H</u> elp

Figure 7.28 "Sections in shell wall" option box

Analyzing Axisymmetric Structures and Tanks by ELPLA

Figure 7.29 Radial forces in shell wall

To view element groups of the tank

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 7.30 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 7.30 "Data – In Plan" option box

To view the meridional moments on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 7.31 appears
- In this check group box, check "Meridional moments My" check box
- The user can choose any other data to be viewed
- Click "OK" button

Figure 7.31 "View Grouping" check group box

Figure 7.32 Element groups of the tank

Example 8

Analysis of a tank resting on half space soil medium

Contents

Page

1	Description of the problem	3
2	Tank geometry and properties	3
3	Numerical Analysis	4
4	Creating the project	4
4.1	Calculation method	4
4.2	Project identification	9
4.3	FE-Net data	9
4.4	Shell properties	
4.5	Soil Properties	
4.6	Loads	
5	Carrying out the calculations	
6	Viewing data and results	

1 Description of the problem

An example of a circular cylindrical tank resting on an isotropic elastic half space soil medium is selected to illustrate some features of *ELPLA* for analyzing shell elements.

2 Tank geometry and properties

A circular cylindrical tank of an inner diameter of d = 18 [m] and a height of H = 7.5 [m] is considered as shown in Figure 8.1. The thickness of the tank wall and base is t = 0.36 [m]. The tank is filled with water. Figure 8.1 shows the storage tank with dimensions, while the tank material and unit weight of the water are listed in Table 8.1. The data of soil medium under the base of the tank are shown in Table 8.2.

Isotropic elastic soil medium $E = 20000 \text{ [kN/m^2]}$ $v_s = 0.4 \text{ [-]}$

Figure 8.1 Circular cylindrical tank resting on an isotropic elastic soil medium

Table 8.1Tank material and water unit weight

Modulus of Elasticity of the tank material	E_c	$= 1.4 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the tank material	v_c	= 0.2	[-]
Unit weight of the water	γ_w	= 9.81	$[kN/m^3]$
Unit weight of the tank material	γ_b	= 25	$[kN/m^3]$

Table 8.2Soil data

Modulus of Elasticity of the soil medium	Ε	= 20000	$[kN/m^2]$
Poisson's ratio of the soil medium	v_s	= 0.4	[-]

3 Numerical Analysis

In order to analyze a water storage tank resting on an isotropic elastic half space soil medium using *ELPLA*. The height of the tank is divided into 30 equal segments, each of 0.25 [m], as shown in Figure 8.2, while the base of the tank is divided into 45 equal segments, each of 0.2 [m].

Figure 8.2 Finite element mesh of the tank

4 Creating the project

In this section, the user will learn how to create a project for analyzing a circular cylindrical tank resting on an isotropic elastic soil medium. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 8.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of forms. The first form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 8.3).

Calculation Method				×
Analysis Type:	00 ⁰ 00 ⁰ 00 ⁰			
Analysis of slab foundation	Analysis of combined piled raft	Analysis of system of many slab foundations	Analysis of rotational shell	Analysis of axisymmetric stress
	A			
Analysis of slab floor	Analysis of grid	Analysis of plane frame	Analysis of plane stress	
Calculation method:	Rotational s O Shell w O Shell w	hell/ 3D-curved shell: ith an opening base ith a floor slab ith a raft foundation		
<u>H</u> elp <u>L</u> oad	Save <u>A</u> s	<u>C</u> ancel	< <u>B</u> ack	ext > Save

Figure 8.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 8.3, define the analysis type of the problem. As the analysis type is a circular cylindrical tank resting on an isotropic elastic soil medium problem, select "Analysis of rotational Shell" button, and check "Shell with a raft foundation" option then click "Next" button to go to the next form. After clicking "Next" button, the "Calculation Method" Form appears, Figure 8.4.

To define the calculation method:

- Select the calculation method "6-Modulus of Compressibility (Iteration)"
- To determine the subsoil model, select "Half Space model"
- Click "Next" button to go to the next form

Calculation Method	×
Calculation Method:	
O 1- Linear Contact Pressure (Conventional Method)	
🔿 2/3- Constant/Variable Modulus of Subgrade Reaction	
O 4- Modification of Modulus of Subgrade Reaction by Iteration	
○ 5-IsotropicElasticHalf Space	
6-Modulus of Compressibility (Iteration)	
○ 7-Modulus of Compressibility (Elimination)	
🔿 8- Modulus of Compressibility for Rigid Raft	
O 9-Flexible Foundation	
Subsoil model:	
Half Space model	
○ Layered soil model	
Help Load Save As Cancel < Back Next > Save	
	-

Figure 8.4 "Calculation Method" Form

The last Form in the wizard is the "Options" Form, Figure 8.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Since no option will be considered in the analysis, click the "Save" button.

Example 8

Determining Determining Subsoil Model Determining Displacements in Soil Determining Stresses in Soil	
Influence of Neighboring Foundations on Raft Influence of Temperature Change on the Raft Influence of Additional Settlements on the Raft Select All	
Ionlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
) Nonlinear analysis using German standard DIN 4014 for load-settlement	
) Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	

After clicking "Save" button, the "Save as" dialog box appears, Figure 8.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "tank resting on half space soil medium". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As							×
$\leftarrow \rightarrow$	This PC > Local Disk (D:) > EL	PLA12.2 projects > Tuto	orial 2 > Example 8		ٽ ب	🔎 Search Exar	mple 8
Organize	▼ New folder						EE 🕶 (
<u> </u>	Name	Date modified	Туре	Size			
	tank resting on half space soil medium	۲۰۲۱/۱۱/۱۰ م ۲۰۲:۵۸	Open projects cre	1 KB	3		
~							
	File name: tank resting on half space soil medi	um					~
Sa	ve as type: Isolated slab foundation-files (*.PO1)					~
∧ Hide Fe	olders					<u>S</u> ave	Cancel

Figure 8.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [tank resting on half space soil medium] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 8.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a tank resting on a half space soil medium"
- Type the date of the project in the "Date" edit box
- Type "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X
Project Io	dentification:
Title	Analysis of a tank resting on a half space soil medium
Date	15/11/2021
Project	Axisymmetric Structures and Tanks
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s

Figure 8.7 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, the tank has an inner diameter of d = 18 [m] and a height of H = 7.5 [m], the height of the tank is divided into 30 equal segments, each of 0.25 [m], and the base of the tank is divided into 45 equal segments, each of 0.2 [m]. To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 8.8. This wizard will guide you through the steps required to generate a FE-Net.

The first form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 8.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 7.5 in the "Height" edit box
- Type 9 in the "Radius" edit box
- Type 30 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

-

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Cylindrical shell" Form appears Figure 8.9, *ELPLA* divides the height of the tank into 30 equal segments, the user can edit the data of the segments individually by using "Modify" button, or all of them by using "In Table" button, if it is necessary.

Example 8

drical shell:	
	Segment No. 1 from 33 segments:
	Segment data:
- /	Start poistion r1 [m] 9.000
2 A	z1 [m] 0.000
	End position r2 [m] 9,000
	z2 [m] 0.250
	LL [m] 0.230
	In Table
	R
	R Modify
	R Modify <u>R</u> efresh
	R Modify Refresh
	R Modify Refresh New
	R Modify Refresh New Insert Segment
	R Modify Refresh New Insert Segment Delete Segment
	R <u>Modify</u> <u>R</u> efresh <u>N</u> ew <u>Insert Segment</u> <u>D</u> elete Segment

Figure 8.9 "Cylindrical shell" Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Net of Base" Form appears Figure 8.10.

To edit the grid spacing in *x*-direction, do the following steps in "Grid in *x*-direction" frame:

- Choose "Constant grid interval" check box
- Type 45 in the "No. of grid intervals" edit box, the base of the tank is divided into 45 equal segments, each of 0.2 [m]

Figure 8.10 "Net of Base" Form

Click "Finish" button, the FE-Net of the tank wall and a sector from the base appears in Figure 8.11.
Example 8

File FE-Net	👂 🐝 🐝 🍟 🎬 🛃 🔜 Data Edit FE-Net	, 👛 🎲 🍽 후 ELPLA - [tank resting on l Setting View	alf space soil m	edium]					-	٥	× ^ ?
FE-Net Generation •	 Slab Corners * Opening Corners * Reference Corners * 	Node Coordinates Opening Corners Connectivity Nodes References ~ Slab Corners Slab Corners	 Zoom In Zoom Out Original Siz 	Zoom Window Zoom Window Zoom % 100	 Zoom Upper Right Zoom Lower Left Zoom Upper Left Zoom Lower Right 	Undo	2 Redraw	Close			
FE-Net Generation	Graphically	In table			Window	Undo	Refresh	Close			
9,750 9,750 8,250 8,250 7,750 6,250 6,750 6,250 5,750 5,250 4,750 3,250 3,750 3,250 2,50 2,	Ś										
<			R								~
r [m] = 20.295 z [n	n] = 5.427										

Figure 8.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 8.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 8.11 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 8.12 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, unit weight of the tank, and filled material properties.

File Shell Properties	출 🎬 🛃 🔍 造 🎲 🏷 🗢 🖛 Setting View RFT Detail	ELPLA - [tank resting on half space so	il medium]						-	٥	× ^ ?
_	p Regions Y Origin Coordinat	Foundation Level Filled material type/Element size es	Com In Image: Com	Zoom Window Move Zoom % 120	Zoom Upper Right 🖌 Zoom Lower Lef Zoom Upper Left Zoom Lower Right	Undo-Display Values •	edraw	Close			
Graphically In 1	table	Shell Properties	7.00 8.00	9.00	Nindow	Undo	Refresh	Close			^
9.75 9.25 8.75- 2.25- 6.75- 6.75- 6.25- 5.25- 5.25- 3.25- 2.75- 2.25- 2.25-											
0.00				R							~
< X [m] = 18.66 Y [m] = 7.44											>

Figure 8.12 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 8.13 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness. Then click "OK" button.

Example 8

Defining	element group	s (with the sa	me thickness ar	nd	—		\times
Group No.	E-Modulus of slab	Poisson's ratio of slab	Slab thickness			<u>0</u> k	
I [-]	[kN/m2]	Nue [-]	d [m]			<u>C</u> ancel	
1	1.4E+07	0.2	0.36			Insert	
**						<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	end to <u>E</u> xce	el
					<u>P</u> as	te from Ex	cel
						<u>H</u> elp	
						<u>H</u> elp	_

Figure 8.13 "Defining element groups" list box

To enter the unit weight of the tank, choose "Unit weight" command from "Shell Properties" menu in Figure 8.12. The following dialog box in Figure 8.14 with a default unit weight of 25 [kN/m^3] appears, click "OK" button.

Unit weight			×
Unit weight		Gb [kN/m3]] 25
<u>0</u> k	New	<u>C</u> ancel	<u>H</u> elp

Figure 8.14 "Unit weight" dialog box

To define the liquid properties of the shell, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 8.12. The following form in Figure 8.15 appears.

To define the filled material properties of the tank:

- Select the "Liquid container" option
- Type 7.5 in the "Height of the liquid" edit box
- Type 9.81 in the "Unit weight of the liquid" edit box

To define the element size of the ring:

- Check the "Constant element sizes in z-direction" check box
- Type 0.2 in the "Element size in each shell segment" edit box
- Click "OK" button

illed material type/Element size			:
Filled material type:			
○ Empty container			
 Liquid container 			
⊖ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	7.5
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	D	I	[m] 0.2000 🜲
	_		
<u>U</u> K <u>C</u> ancel			Heip

Figure 8.15 "Liquid Properties/Element size" Form

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 8.12 to save the shell properties
- Choose "Close" command from "File" menu in Figure 8.12 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Soil Properties

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" form in Figure 8.16 appears, the soil properties are defined by Modulus of Elasticity "E", and is supposed to have the following parameters:

Ε	= 20000	$[kN/m^2]$
GAM	= 18	$[kN/m^3]$
FHI	= 30	[°]
c	= 0	$[kN/m^2]$
VS	= 0.4	[-]
	E GAM FHI c vs	E = 20000 GAM = 18 FHI = 30 c = 0 vs = 0.4

Other data in the example is not required, the user can use the default values.

Properties	ring capacity factors		
Geotechnical data of the layer:			
Soil properties are defined by Modulus of Elasticity E		\sim	
Modulus of Elasticity of the soil	E	[kN/m2] 20000	
Unit weight of the soil	GAM	[kN/m3] 18	
Angle of internal friction	FHI	[°] 30	
Cohesion of the soil	c	[kN/m2] 0	
Poisson's ratio of soil (0 <= Nue <= 0.5)	Nue	[-] 0.4	
Main Soil Data			
Settlement reduction factor (Alfa <= 1)		F1 1	_
Groundwater depth under the ground surface		1.000	
Save Cancel Help	Load	Save	<u>A</u> s

Figure 8.16 "Soil Properties" Form

After defining the soil properties, click "Save" button.

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 8.17 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 8.17. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank material, while the hydrostatic pressure on the tank wall is defined by the unit weight of water.

Figure 8.17 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 8.17 to save the load data
- Choose "Close" command from "File" menu in Figure 8.17 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 8.18.

🗄 🗋 💕 🐌 🎚	👂 🎲 🎲 🎬 🚂 🔜 🖹 🎲 🌍 🍽 🗢 🗄 ELPLA - [tank resting on half s	pace soil medium]
File Data	Solver Results Setting View	
	Assembling the load vector	
Computation of all	Individual Calculations	Self-Adaptive Mesh Wizard

Figure 8.18 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining flexibility coefficients of the soil
- Assembling the soil stiffness matrix
- Assembling the slab stiffness matrix
- Iteration process
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

Carrying out all computations

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window. The following "Iteration parameters" option box in Figure 8.19 appears
- For this example, choose an accuracy of 0.0001 [m] to end the iteration process
- Click "OK" button

Iteration parameters	
Which option is ending the iteration process?	
Accuracy [m]	0.0001
○ Iteration No.	10
<u>O</u> k <u>C</u> ancel	<u>H</u> elp

Figure 8.19 "Iteration parameters" option box

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 8.20 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Determining flexibility coefficients of the soil	
Assembling the flexibility matrix	
I = 46 from 46 steps	
	<u>C</u> ancel

Figure 8.20 Analysis progress menu

"Check of convergence" message Figure 8.21 appears showing that no convergence is reached at the last step, click "Ok" button.

Check of convergence	
No convergence is read	hed at the last step!
<u>0</u> k	<u>H</u> elp

Figure 8.21 "Check of convergence" message

No.	Accuracy [m]		Stop
▶ 1	0.00814265400		
•			<u>C</u> ontinue
			<u>H</u> elp
Iteration c	vcles is ended at accuracy [m]<= 0.	001	
Computati	on time = 00:00:00		
			Iteration is paused!

Click "Stop" button (Figure 8.22), to stop the iteration process as no convergence has reached.

Figure 8.22 "Iteration process" list box

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 8.23. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Totalload	[kN] =	24826.0
Sum of contact pressures	[kN] =	24614.1
<u>Q</u> k	<u>H</u> elp	

Figure 8.23 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 8.24).

) 💕 🛍 () G G 1 1 1 1	🔍 🛅 🎒 🌇 🍽 🖛 ELPLA	- [tank resting on half space so	il medium]				-	٥	×
File	Data	Solver Results	Setting View								^ ?
In Plan	lsometric View	Contour Lines	iew Circular Diagrams es 🖶 Deformations n Curves X Principal moments	TT Support Reactions ▲ Punching Shear ♦ Rotational shell Results ▼	 ▶ Deformation Vectors	Boring Logs/ Boring Limit Depth Locations	Sections in Sections in shell wall shell base	Display Tables of Data • Of Results •			
Plan	View			Contactorial shell Results	· · · · · · · · · · · · · · · · · · ·	Limit Depth Locations	shell wall shell base	of Data • of Results •			

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Sections in shell base
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the radial forces in the shell wall

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 8.25 appears
- In the "Sections in shell wall" option box, select "Radial forces *Nr*" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 8.26.

Sections in shell wall		×
Select itemto display:		
Radial forces Nr	○ Merid	ional forces Ny
O Meridional moments My		
○ Tangential moments Mt		<u>0</u> k
◯ Horizontal deformations Vh		<u>C</u> ancel
○ Vertical deformations Vv		
O Meridional rotations Vm		<u>H</u> elp

Figure 8.25 "Sections in shell wall" option box

Example 8

Figure 8.26 Radial forces in shell wall

To view the meridional moments in the shell base

- Choose "Sections in shell base" command from "Section" menu. The following option box in Figure 8.27 appears
- In the "Sections in shell base" option box, select "Meridional moments My" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 8.28.

Sections in shell base	×	
Select itemto display:		
○ Radial forces Nr	O Meridional forces Ny	
Meridional moments My	○ Tangential moments Mt	
🔘 Horizontal deformations Vh		
○ Base settlements w	<u>O</u> k	
⊖ Base contact pressures q	Cancel	
○ Soil stiffnesses ks		
O Meridional rotations Vm	<u>H</u> elp	

Figure 8.27 "Sections in shell base" option box

Example 8

Figure 8.28 Meridional moments in shell base

To view element groups of the tank

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 8.29 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 8.29 "Data – In Plan" option box

To view the meridional moments on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 8.30 appears
- In this check group box, check "Meridional moments My" check box
- The user can choose any other data to be displayed
- Click "OK" button

Figure 8.30 "View Grouping" check group box

Example 9

Analysis of a tank with a different base thickness resting on half space soil medium

Contents

Page

1	Description of the problem	3
2	Tank geometry and properties	3
3	Numerical Analysis	4
4	Creating the project	5
4.1	Calculation method	5
4.2	Project identification	9
4.3	FE-Net data	9
4.4	Shell properties	14
4.5	Soil properties	
4.6	Loads	
5	Carrying out the calculations	21
6	Viewing data and results	24

1 Description of the problem

An example of a circular cylindrical storage tank resting on an isotropic elastic half space soil medium is selected to and illustrate some features of *ELPLA* for analyzing circular cylindrical shell elements.

2 Tank geometry and properties

A circular cylindrical tank of an inner diameter of d = 20 [m] and a height of H = 10 [m] is considered as shown in Figure 9.1. Thicknesses of the wall and the base are different. The thickness of the tank wall is $t_w = 0.2$ [m] and that of the base is $t_b = 0.5$ [m]. The tank is filled with water. Figure 9.1 shows the storage tank, while the tank material and unit weight of the water are listed in Table 9.1. The data of soil medium under the base of the tank are shown in Table 9.2.

Table 9.1 Tank material and water unit weight

Modulus of Elasticity of the tank material	E_c	$= 2 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the tank material	v_b	= 0.16	[-]
Unit weight of the tank material	γ_b	= 24	$[kN/m^3]$
Unit weight of the water	γ_w	= 10.19	$[kN/m^3]$

Table 9.2 Soil data

Modulus of Elasticity of the soil medium	Ε	= 20000	$[kN/m^2]$
Poisson's ratio of the soil medium	v_s	= 0.2	[-]

3 Numerical Analysis

In order to analyze a water storage tank resting on an isotropic elastic half space soil medium using *ELPLA*, this example shown in Figure 9.1 is analyzed. The height of the tank is divided into 50 equal segments, each of 0.20 [m], as shown in Figure 9.2, while the half base of the tank is divided into 50 equal segments, each of 0.20 [m].

Figure 9.2 Finite element mesh of the tank

4 Creating the project

In this section, the user will learn how to create a project for analyzing a tank resting on an isotropic elastic half space soil medium. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 9.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of forms. The first form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 9.3).

Figure 9.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 9.3, define the analysis type of the problem. As the analysis type is a tank resting on an isotropic elastic half space soil medium problem, select "Analysis of rotational Shell" button, and check "Shell with a raft foundation" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Calculation Method" Form appears, Figure 9.4.

To define the calculation method:

- Select the calculation method "4-Modification of Modulus of Subgrade Reaction by Iteration"
- To determine the subsoil model, select "Half Space model"
- Click "Next" button to go to the next Form

Calculation Method:
O 1- Linear Contact Pressure (Conventional Method)
🔿 2/3- Constant/Variable Modulus of Subgrade Reaction
4-Modification of Modulus of Subgrade Reaction by Iteration
○ 5-IsotropicElasticHalf Space
○ 6- Modulus of Compressibility (Iteration)
○ 7- Modulus of Compressibility (Elimination)
🔿 8- Modulus of Compressibility for Rigid Raft
O 9-Flexible Foundation
Subsoil model:
Half Space model
🔿 Layered soil model
Help Load Save As Cancel < Back Next > Save

Figure 9.4 "Calculation Method" Form

The last Form in the wizard is the "Options" Form, Figure 9.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Since no option will be considered in the analysis, click the "Save" button.

Options: Slab With Girders Addtional Springs Supports/Boundary Conditions Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Straiss in Soil Determining Strains in Soil Influence of Neighboring Foundations on Raft Influence of Temperature Change on the Raft Select All Nonlinear analysis of piled raft:
Select All Ionlinear analysis of piled raft:
Nonlinear analysis of piled raft:
Nonlinear analysis using a hyperbolic function for load-settlement
Nonlinear analysis using German standard DIN 4014 for load-settlement
) Nonlinear analysis using German recommendations EA-Piles for load-settlement
Nonlinear analysis using a given load-settlement curve

After clicking "Save" button, the "Save as" dialog box appears, Figure 9.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Tank with different base thickness". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As					:	×
\leftrightarrow \rightarrow \uparrow	≪ ELPLA12.2 projects → Tutorial 2	> Example9	ٽ ~		nple9	
Organize 🔻 Ne	ew folder				== • ?	
↑ Name	^	Date modified	Туре	Size	2	
	Ν	lo items match your sear	rch.			
Ŷ						
File <u>n</u> ame:	Tank with different base thickness					~
Save as <u>t</u> ype:	Isolated slab foundation-files (*.PO1)					~
∧ Hide Folders				<u>S</u> ave	Cancel]

Figure 9.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Tank with different base thickness] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 9.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a tank resting on a half space soil medium"
- Type the date of the project in the "Date" edit box
- Type "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X
Project Io	dentification:
Title	Analysis of a tank resting on a half space soil medium
Date	06/12/2021
Project	Axisymmetric Structures and Tanks
<u>S</u> ave	e <u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s

Figure 9.7 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, a circular cylindrical tank of an inner diameter of d = 20 [m] and a height of H = 10 [m], the height of the tank is divided into 50 equal segments, each of 0.20 [m], while the half base of the tank is divided into 50 equal segments, each of 0.20 [m]. To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 9.8. This wizard will guide you through the steps required to generate a FE-Net.

The first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 9.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Cylindrical shell" button
- Type 10 in the "Height" edit box
- Type 10 in the "Radius" edit box
- Type 50 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Cylindrical shell" Form appears Figure 9.9, *ELPLA* divides the height of the tank into 50 equal segments, the user can edit the data of the segments individually by using "Modify" button, or all of them by using "In Table" button, if it is necessary.

Example 9

	Segment No. 1 from 53 segment	ts:
	Segment data:	-1
z M	Start poiston ri [m] 10.0
Ľ	z1 [m] 0.0
	End position r2 [m] 10.0
	z2 [m] 0.2
	In Table	
		<u>M</u> odify
	₽R	<u>M</u> odify <u>R</u> efresh
	₽ _R	<u>M</u> odify <u>R</u> efresh <u>N</u> ew
	₽R	<u>M</u> odify <u>R</u> efresh <u>N</u> ew Insert Segment
	₽R	<u>M</u> odify <u>R</u> efresh <u>N</u> ew <u>I</u> nsert Segment
	₽R	Modify Refresh New Insert Segment Delete Segment
	₽	<u>M</u> odify <u>R</u> efresh <u>N</u> ew <u>I</u> nsert Segment <u>D</u> elete Segment

Figure 9.9 "Cylindrical shell" Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Net of Base" Form appears Figure 9.10.

To edit the grid spacing in *x*-direction, do the following steps in "Grid in *x*-direction" frame:

- Choose "Constant grid interval" check box
- Type 50 in the "No. of grid intervals" edit box, the base of the tank is divided into 50 equal elements, each of 0.2 [m]

Figure 9.10 "Net of Base" Form

Click "Finish" button, the FE-Net of the tank wall and a sector from the base appears in Figure 9.11.

Example 9

Figure 9.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 9.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 9.11 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 9.12 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, group regions, unit weight of the tank, and the filled material properties.

Figure 9.12 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 9.13 appears. In this list box, define E-Modulus, *Poisson's* ratio and slab thickness for both the tank wall and the tank base, as they differ in thickness. Then click "OK" button.

Defining el	ement group	s (with the sam	e thickness ar	nd	_		×
Group No. I [-]	E-Modulus of slab Eb [kN/m2]	Poisson's ratio of slab Nue [-]	Slab thickness d [m]			<u>O</u> k <u>C</u> ancel	
1	2E+07	0.16	0.2			<u>I</u> nsert	
2	2E+07	0.16	0.5			<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	end to <u>E</u> xce	el
					<u>P</u> as	te from Ex	cel
						<u>H</u> elp	
							:

Figure 9.13 "Defining element groups" list box

Defining the slab thickness for materials on the net may be carried out either graphically or numerically (in a table). In the current example, the user will define the slab thickness on the net graphically.

To define the slab thickness for the tank base

- Choose "Select Elements" command from "Graphically" menu in the window of Figure 9.12.
- When "Select Elements" command is chosen, the cursor will change from an arrow to a cross hair. A group of elements can be selected by holding the left mouse button down at the corner of the region. Then, drag the mouse until a rectangle encompasses the required group of elements. When the left mouse button is released, all elements in the rectangle are selected
- Select the elements that include the tank base as shown in Figure 9.14
- Choose "Elements Groups" command from "Graphically" menu in the window of Figure 9.12, "Group Regions" dialog box Figure 9.15 appears
- Define the "Group No." as type "2", while "Group No." of the tank wall elements will be as type "1", where type "1" is the default "Group No.", then click "OK" button

Figure 9.14 Selecting the nodes that include the tank base

Group Regions	×
Group No.	[-] 2 ~
<u>Ok</u> <u>C</u> ancel	Help

Figure 9.15 "Group Regions" dialog box

To enter the unit weight of the tank, choose "Unit weight" command from "Shell Properties" menu in Figure 9.12. The following dialog box in Figure 9.16 with a default unit weight of 25 [kN/m³] appears, type 24 in the "Unit Weight" edit box, then click "OK" button.

Unit weight	×
Unit weight	Gb [kN/m3] 24
<u>O</u> k <u>N</u> ew	<u>C</u> ancel <u>H</u> elp

Figure 9.16 "Unit weight" dialog box

To define the filled material properties of the shell, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 9.12. The following form in Figure 9.17 appears.

Filled material type/Element size			×
Filled material type:			
 Empty container 			
 Liquid container 			
○ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	10
Unit weight of the liquid	γw	[kN/m3]	10.19
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	DI		[m] 1 🔹
<u>O</u> k <u>C</u> ancel			<u>H</u> elp

Figure 9.17 "Liquid Properties/Element size" dialog box

To define the filled material properties of the tank:

- Select the "Liquid container" option
- Type 10 in the "Height of the liquid" edit box
- Type 10.19 in the "Unit weight of the liquid" edit box

To define the element size of the ring wall:

- Check the "Constant element sizes in z-direction" check box
- Type 1 in the "Element size in each shell segment" edit box. The element size is chosen to be 1 [m] larger than the segment size in order to ignore further subdivision of the segments into smaller elements. In some cases, it is necessary to divide the segment into smaller elements in order to make the analysis more precise. Nevertheless, the final results of the internal forces appear only at nodes of segments
- Click "OK" button

Figure 9.18 "Shell Properties" window after defining the shell data

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 9.18 to save the shell properties
- Choose "Close" command from "File" menu in Figure 9.18 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Soil properties

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" form in Figure 9.19 appears, the soil properties are defined by Modulus of Elasticity "E", and is supposed to have the following parameters:

Modulus of Elasticity of the soil	Ε	= 20000	$[kN/m^2]$
Unit weight of the soil	GAM	= 18	$[kN/m^3]$
Angle of internal friction	FHI	= 30	[°]
Cohesion of the soil	c	= 0	$[kN/m^2]$
Poisson's ratio of the soil medium	v_s	= 0.2	[-]

Other data in the example are not required, the user can use the default values.

I Properties Calculation parameters of flexibility coefficients Bearing	capacity factors		
Geotechnical data of the layer:			
Soil properties are defined by Modulus of Elasticity E			\sim
Modulus of Elasticity of the soil	E	[kN/m2] 20	000
Unit weight of the soil	GAM	[kN/m3] 18	
Angle of internal friction	FHI	[°] 30	
Cohesion of the soil	с	[kN/m2] 0	
Poisson's ratio of soil (0 <= Nue <= 0.5)	Nue	[-] 0.2	2
/lain Soil Data:			
Settlement reduction factor (Alfa <= 1)		[-] 1	
Groundwater depth under the ground surface		1.0)

Figure 9.19 "Soil Properties" form

After defining the soil properties, click "Save" button.

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 9.20 appears. In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 9.20. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank, while the hydrostatic pressure on the tank wall is defined by the unit weight of water.

HIE Loads S	etting View	🗿 🌇 🍋 🗢 ELPL	A - [Tank with diffe	erent base thickness]					- 6	□ × ^ ?
Select Nodes	₩ Edit Nodal Load	H Nodal loads	🔁 Zoom In C Zoom Out		Zoom Upper Right 🖌 Zoom Lower	Left Undo	Redraw			
Add Nodal Loads	Edit Member Load	in table	(Original Size	Zoom % 111	 Zoom Lower Right Window 	Undo	Refresh	Close		
	0.0	1.0 2.0 3.0	4.0 5.0 6.0	7.0 8.0 9.0	10.0	Gildo	Kenesii	CIOSE		^
12.1_ 11.1_ 9.1 9.1 5.1 5.1 5.1										
0.0					0= R					
< X [m] = 26.2 V [m] = 7	8									× >

Figure 9.20 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 9.20 to save the load data
- Choose "Close" command from "File" menu in Figure 9.20 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 9.21.

Figure 9.21 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining flexibility coefficients of the soil
- Assembling the slab stiffness matrix
- Iteration process
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

Carrying out all computations

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab Window. The following "Iteration parameters" option box in Figure 9.22 appears
 For this example, shoese an accuracy of 0.0001 [m] to and the iteration process.
- For this example, choose an accuracy of 0.0001 [m] to end the iteration process Click "OK" button
- Click "OK" button

Iteration parameters					
Which option is ending the iteration process?					
Accuracy [m]	0.0001				
○ Iteration No.	10				
<u>O</u> k <u>C</u> ancel	<u>H</u> elp				

Figure 9.22 "Iteration parameters" option box

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 9.23 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Determining flexibility coefficients of the soil	
Assembling the flexibility matrix	
Time remaining = 00:00:00	
I = 27 from 51 steps	Cancel

Figure 9.23 Analysis progress menu

"Check of convergence" message Figure 9.24 appears showing that no convergence is reached at the last step, click "Ok" button.

Check of convergence	
No convergence is reach	ed at the last step!
<u>0</u> k	<u>H</u> elp

Figure 9.24 "Check of convergence" message

Click "Stop" button in Figure 9.25, to stop the iteration process as no convergence has reached.
Ite No	ration	Accuracy [m]		Stop
Þ	5	0.00311901400		
	4	0.00495361500		Castiana
	3	0.00538487700		Continue
	2	0.00816764700		
	1	0.01593186000		
٠				<u>H</u> elp
ter	ation c	ycles is ended at accuracy [m]<	= 0.0001	
ter	ation cy	ycles is ended at accuracy [m]< on time = 00:00:01	= 0.0001	

Figure 9.25 "Iteration process" list box

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 9.26. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	38795
Sum of contact pressures	[kN] =	41630
<u>O</u> k	<u>H</u> elp	

Figure 9.26 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 9.27).

🙁 😂 🖆 🕼 🕼 🎲 🍟 🎬 🔄 R. 🚵 🎲 🍼 マ ELPLA - [tank with different base]	hickness]				-	٥	×
In Isometric Contour Isometric Ourse Principal moments Result Principal moments Principal moments	 ✓ Deformation Vectors ∰ Principal Strains M Deformed Mesh Intropal Stresses 	Boring Logs/ Boring Limit Depth Locations	Sections in Sections in shell wall shell base	Display Tables of Data • of Results •			

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Sections in shell base
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the radial forces in the shell wall

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 9.30 appears
- In the "Sections in shell wall" option box, select "Radial forces *Nr*" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 9.29.

Figure 9.28 "Sections in shell wall" option box

Figure 9.29 Radial forces in shell wall

To view the meridional moments in the shell base

- Choose "Sections in shell base" command from "Section" menu. The following option box in Figure 9.30 appears
- In the "Sections in shell base" option box, select "Meridional moments My" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 9.31.

Sections in shell base			×
Select itemto display:			
○ Radial forces Nr		al forces Ny	
Meridional moments My	🔿 Tangentia	al moments Mt	
🔘 Horizontal deformations Vh			
○ Base settlements w		<u>0</u> k]
⊖ Base contact pressures q		<u>C</u> ancel	1
○ Soil stiffnesses ks		Hala	1
O Meridional rotations Vm		neip	

Figure 9.30 "Sections in shell base" option box

Figure 9.31 Meridional moments in shell base

To view element groups of the tank

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 9.32 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Data - In Plan	×
Select one item to draw:	
○ Net numbering	⊖ Coordinates r⁄z
Element groups	
◯ Slab thickness	<u>0</u> k
◯ System of loading	Cancel
 Boundary conditions 	
○ Rotational shell system	Help

Figure 9.32 "Data – In Plan" option box

To view the meridional moments on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 9.33 appears
- In this check group box, check "Meridional moments My" check box
- The user can choose any other data to be displayed
- Click "OK" button

View Grouping			Х
Select items to display			
Net numbering	~		
Coordinates r/z		<u>0</u> k	٦.
System of loading			- C
Rotational shell system		Cancel	1
Radial forces Nr			
🖂 Meridional moments My		Help	1
Tangential moments Mt		<u>n</u> cip	_
Meridional forces Ny	~	Select All	
		B Select All	

Figure 9.33 "View Grouping" check group box

Figure 9.34 Element groups of the tank with the meridional moments

Analysis of a cylindrical water container with a conical base

Contents

Page

1	Description of the problem	3
2	Container geometry and properties	3
3	Numerical Analysis	4
4	Creating the project	5
4.1	Calculation method	5
4.2	Project identification	8
4.3	FE-Net data	8
4.4	Shell properties	
4.5	Supports/ boundary conditions	
4.6	Loads	
5	Carrying out the calculations	23
6	Viewing data and results	25

1 Description of the problem

An example of a cylindrical water container with a conical base is selected to illustrate some features of *ELPLA* for analyzing circular cylindrical shell elements.

2 Container geometry and properties

A cylindrical water container with a conical base of a radius of a = 3.0 [m] and a height of H = 12.0 [m] is considered as shown in Figure 10.1. Thickness of the container wall is 0.3 [m], while that for the conical base is 0.2 [m]. Figure 10.1 shows the container with dimensions and supports, while the container material and unit weight of the water are listed in Table 10.1.

Table 10.1 Container material and water unit weight

Modulus of Elasticity of the container material	E_c	= 10000	$[kN/m^2]$
Poisson's ratio of the container material	v_c	= 0.17	[-]
Unit weight of the water	γ_w	= 10	$[kN/m^3]$

Figure 10.1 Cylindrical water container with dimensions and supports

3 Numerical Analysis

In the analysis, the height of the tank is divided into two main segments, the first one is divided into 30 subsegments (30×0.3 [m]), while the second is divided into 20 subsegments (20×0.15 [m]) as shown in Figure 10.2.

Figure 10.2 Finite element mesh of the container with boundary condition

4 Creating the project

In this section, the user will learn how to create a project for analyzing a cylindrical water container with a conical base. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 10.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of forms. The first form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 10.3).

Figure 10.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 10.3, define the analysis type of the problem. As the analysis type is a cylindrical water container with a conical base problem, select "Analysis of rotational Shell" button, and check "Shell with an opening base" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Options" Form appears, Figure 10.4.

The last Form in the wizard is the "Options" Form, Figure 10.4. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Calculation Method	×
Options: Slab With Girders Additional Springs Supports/ Boundary Conditions Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Stresses in Soil Determining Strains in Soil Image: Strains in Soin Image: Strains in S	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
○ Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next >	•

Figure 10.4 "Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 10.5. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Water container". *ELPLA* will use automatically this file name in all reading and writing processes.

e As				>
	sk (D:) > ELPLA12.2 projects > Tut	orial 2 > Example 1	D	→ Č , Search Example 10
Organize 🔻 New folder				III 👻 😮
^ Name ^	Date modified	Туре	Size	
			No items match your search.	
V Minter contribut				
File name: Water container	n-files (* PO1)			· · · · · · · · · · · · · · · · · · ·
Save as type: Isolated stab roundation	r mo (n o i)			

Figure 10.5 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Water container] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 10.6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a cylindrical water container"
- Type the date of the project in the "Date" edit box
- Type "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X		
Project Io	dentification:		
Title	Analysis of a cylindrical water container		
Date	22/12/2021		
Project	Axisymmetric Structures and Tanks		
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s		

Figure 10.6 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, a cylindrical water container with a conical base of a radius of a = 3.0 [m] and a height of H = 12.0 [m] is considered, the height of the tank is divided into two main segments, the first one is divided into 30 subsegments (30×0.3 [m]), while the second is divided into 20 subsegments (20×0.15 [m]). To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 10.7. This wizard will guide you through the steps required to generate a FE-Net, the first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 10.7 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Irregular shell" button Type 0.01 in the "Tank base radius Rb" edit box, which is approximately zero (Note that: from the principles of axis-symmetrical shell elements, radius cannot be exactly zero)

To identify the first main segment

- Type 3 in the "Height *Hw*" edit box Type 3 in the "Upper radius *Ro*" edit box Type 20 in the "Number of segments *Ns*" edit box

To identify the second main segment

- Type 9 in the "Height *Hw*" edit box
 Type 3 in the "Upper radius *Ro*" edit box
 Type 30 in the "Number of segments *Ns*" edit box
 Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Irregular shell" Form containing the data of the segments appears in Figure 10.8, The user can edit the data of each segment individually or all of them by using "In Table" button, If it is necessary.

Analysis of rotational shell	
Irregular shell:	
	Segment No. 1 from 53 segments: Segment data: Start poistion z1 [m] 0.00 End position r2 [m] 0.16 z2 [m] 0.15
	In Table In Table <u>Refresh</u> <u>New</u> <u>Insert Segment</u> <u>D</u> elete Segment <u>C</u> opy Segment
<u>H</u> elp <u>C</u> ancel	< <u>B</u> ack <u>N</u> ext > <u>F</u> inish

Figure 10.8 'Irregular shell" Form

Click "Finish" in "Analysis of rotational shell" wizard, the generated FE-Net appears Figure 10.9.

Figure 10.9 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 10.9 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 10.9 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the tank properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 10.10 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, group regions, unit weight of the tank, and the filled material properties.

Figure 10.10 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 10.11 appears. In this list box, define E-Modulus, *Poisson's* ratio and slab thickness for both the wall and the base of the tank as they differ in thickness. Then click "OK" button.

Defining el	ement group	nd	-		×		
Group No. I [-]	E-Modulus of slab Eb [kN/m2]	Poisson's ratio of slab Nue [-]	Slab thickness d [m]			<u>O</u> k <u>C</u> ancel	
1	10000	0.17	0.3			<u>I</u> nsert	
2	10000	0.17	0.2			_	_
)-w						<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	end to <u>E</u> xce	el
					<u>P</u> as	te from Ex	cel
						<u>H</u> elp	

Figure 10.11 "Defining element groups" list box

Defining the slab thickness for materials on the net may be carried out either graphically or numerically (in a table). In the current example, the user will define the slab thickness on the net graphically.

To define the slab thickness for the tank base

- Choose "Select Elements" command from "Graphically" menu in the window of Figure 10.10
- When "Select Elements" command is chosen, the cursor will change from an arrow to a cross hair. A group of elements can be selected by holding the left mouse button down at the corner of the region. Then, drag the mouse until a rectangle encompasses the required group of elements. When the left mouse button is released, all elements in the rectangle are selected
- Select the elements that include the tank base as Figure 10.12
- Choose "Elements Groups" command from "Graphically" menu in the window of Figure 10.10, "Group Regions" dialog box Figure 10.13 appears
- Define the "Group No." of the base elements as type "2", while "Group No." of the wall elements will be as type "1", where type "1" is the default "Group No.", then click "OK" button

Image: Setting Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details Image: Setting View RFI Details	× ^ (?)
🖌 Select Elements 🖀 Element groups 🌾 Unit weight 🛛 🚔 Foundation Level 🔍 Zoom In 🔍 Zoom Window 🦯 Zoom Upper Right 🗸 Zoom Lower Left 📉 🧷 🔯	
Telement groups 📲 Group Regions Telement groups 📲 Group Regions Telement groups 🖬 Foundation Depth Telement groups Com Upper Left Undo-Element groups Close Q. Zoom Ski 205 V Zoom Lower Right Close groups Close	
Graphically in table Shell Properties Window Undo Refresh Close	
<	>

Figure 10.12 Selecting the elements that include the tank base

Group Regions	×
Group No.	[-] 2 ~
<u>O</u> k <u>C</u> ancel	<u>H</u> elp

Figure 10.13 "Group Regions" dialog box

To enter the unit weight of the container, choose "Unit weight" command from "Shell Properties" menu in Figure 10.10. The following dialog box in Figure 10.14 with a default unit weight of 25 $[kN/m^3]$ appears, type 0 in the "Unit weight" edit box to neglect the self-weight of the tank, then click "OK" button.

Unit weight			×
Unitweight		Gb [kN/m3] 0	
<u>O</u> k	New	<u>C</u> ancel	<u>H</u> elp

Figure 10.14 "Unit weight" dialog box

To define the filled material properties of the container, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 10.10. The following form in Figure 10.15 appears.

Filled material type/Element size			×
Filled material type:			
O Empty container			
Liquid container			
○ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	12
Unit weight of the liquid	γw	[kN/m3]	10
Granular material properties:			
Top height of the granular material	H1	[m]	1.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	22
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	DI		[m] 1 🚔
<u>O</u> k <u>C</u> ancel			<u>H</u> elp

Figure 10.15 "Filled material type/Element size" Form

To define the filled material properties of the container:

- Select "Liquid container" option
- Type 12 in the "Height of the liquid" edit box
- Type 10 in the "Unit weight of the liquid" edit box

To define the element size of the container:

- Check the "Constant element sizes in z-direction" check box
- Type 1 in the "Element size in each shell segment" edit box. The element size is chosen to be 1 [m] larger than the segment size in order to ignore further subdivision of the segments into smaller elements. In some cases, it is necessary to divide the segment into smaller elements in order to make the analysis more precise. Nevertheless, the final results of the internal forces appear only at the nodes of segments
- Click "OK" button

📇 🗋 🚅 뷥 📦 File Shell Prop	🐨 🐨 旝 🎬 🛃 perties Setting	RFT Details	ELPLA - [Water container]								-	٥	× ^ 🕐
🥖 Select Elements 😰 Element groups	😭 Element groups	Y Unit weight	uation Level ↓ Filled material type/Element size	 ➡ Zoom In ➡ Zoom Out ➡ Original Siz 	@ Zoom Window ∑ Move e Zoom % 111	Zoom Upper Right Coom Upper Left Coom Lower Right	Zoom Lower Left	Undo-Filled material type/Element size •	Redraw	Close			
Graphically	In table	2	Shell Properties			Window		Undo	Refresh	Close			
			0 0106462902353535555560										^
12.00 10.50 9.00 4.50 1.50 0.75 0.02 1.50 0.02													
X [m] = 23.17 Y [m]	= 7.64												>

Figure 10.16 "Shell Properties" window after defining the container properties

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 10.16 to save the shell properties
- Choose "Close" command from "File" menu in Figure 10.16 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Supports/ boundary conditions

To define the support, choose "Supports/ Boundary Conditions" command from "Data" Tab. The following window in Figure 10.17 appears.

🗮 🗋 📄 🛅 🐌 🛞 🛞 🎁 🎬 属 🔣 🖄 崎 🌇 (P 🗢 ELPLA - [Wate	r container]		- ¤ ×
File Supports/ Boundary Conditions Setting View RFT Details - Select Nodes Image: Conditions Edit Support/ Boundary Conditions Edit Support/ Boundary Conditions - Add Supports/ Boundary Conditions Edit Remove Hinge Edit Hinge Graphically	Node restraints	Q Zoom In Q Zoom Window Zoom Upper Right Zoom Lower Left Image: Close Image: Close Image: Close Close Q Original Size Zoom % 100 Zoom Lower Right Undo Refraw Close Window Undo Window Undo Refraw Close	^ 🔮
	850		^
12.00 10.60 5.00 6.00 1.50			
< X [m] = 12.33 Y [m] = 9.06			>

Figure 10.17 "Supports/ Boundary Conditions" Window

To define the support on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 10.17. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that has the support as shown in Figure 10.18
- After selecting the node, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu (Figure 10.17). The "Supports/ Boundary Conditions" dialog box in Figure 10.19 appears.

Figure 10.18 Selection of the node that has the support

In this dialog box

- Type 0 in the "Displacement w" edit box to define the vertical support
- Click "OK" button

Supports/ Boundary Conditions	×
Node restraints: Displacement Displacement Rotation	u [cm] F w [cm] 0 Theta [Rad] F
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	<< <u>L</u> ess

Figure 10.19 "Supports/ Boundary Conditions" dialog box

Figure 10.20 "Supports/ Boundary Conditions" window after defining the support

After defining the supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 10.20 to save the data of supports
- Choose "Close" command from "File" menu in Figure 10.20 to close the "Supports/ Boundary conditions" window and return to the main window

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 10.21 appears.

In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 10.21. In this example, there is not applied load, as the vertical load has been already defined by the unit weight of the tank, while the hydrostatic pressure on the tank wall is defined by the unit weight of water.

H 1 1 10 100 1100 11	PLA - [Water container]				-	× ?
	🕂 Zoom In 🛛 🥥 Zoom Window	🗸 Zoom Upper Right 🧹 Zoom Lower Left		2 🗖		
🖄 Remove Nodal Loads 🥋 Remove Member Load 🛛 🛄 Member lo	Is 🔍 Zoom Out 🖓 Move	🔨 Zoom Upper Left	Undo Re	edraw Close		
착 Add Nodal Loads 🕺 Edit Member Load	🔍 Original Size Zoom % 100 🔹	🔨 Zoom Lower Right	-	anam cross	-	
Graphically In table	Wi	ndow	Undo Re	fresh Clos	e	 _
OCCEBA	12363930453850					^
						-
12.00 د						
10.50	+					
9.00						
7.50-						
6.00						
	потпост.					
4.50						
3.00	mammand.					
1 50						
<						>
X [m] = 12.62 Y [m] = 9.82						

Figure 10.21 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 10.21 to save the load data
- Choose "Close" command from "File" menu in Figure 10.21 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the tank is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 10.22.

Figure 10.22 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 10.23 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 60 from 153 steps	Cancel

Figure 10.23 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 10.24. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution			
V - Load			
Total load	[kN] =	2834	
Sum of contact pressures	[kN] =	2834	
<u>0</u> k	<u>H</u> elp		

Figure 10.24 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 10.25).

🗮 🗋 📂 🛅 🐌 🐨 🐨 🏪 🌆 🔙 🗮 🚵 👘 🍼 🏞 ELPLA - [Water container]			-	٥	\times
File Data Solver Results Setting View RFT Details					^ 🕐
In Isometric Contour ## Result Values	∖ Deformation Vectors 👾 Principal Strains 🤭 Deformed Mesh 💠 Principal Stresses	Boring Logs/ Boring Limit Depth Locations shell wall			

Figure 10.25 "Results" Tab

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Support Reactions
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the radial forces on the shell wall

- From "Rotational shell results" command in the "Results" menu, choose "In Plan" command, the following option box in Figure 10.26 appears
- In the "Distribution of Internal Forces" option box, select "Radial forces Nr" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 10.27.

Figure 10.26 "Distribution of Internal Forces" option box

Figure 10.27 Radial forces on the shell wall

To view the meridional moments on the shell wall

- From "Rotational shell results" command in the "Results" menu, choose "In Plan" command. The following option box in Figure 10.28 appears
- In the "Distribution of Internal Forces" option box, select "Meridional moments My" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 10.29.

Distribution of Internal Forces			×
Select one item to draw:			
○ Radial forces Nr	O Meridional forces Ny		
Meridional moments My	\bigcirc Tangential moments Mt		
🔘 Horizontal deformations Vh		<u>0</u> k]
○ Vertical deformations Vv		<u>C</u> ancel	1
O Meridional rotations Vm			1
○ Shell deformation Delta		<u>H</u> elp	

Figure 10.28 "Distribution of Internal Forces" option box

Figure 10.29 Meridional moments on the shell wall

To view element groups of the tank

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 10.30 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Data - In Plan	×	
Select one item to draw:		
○ Net numbering	⊖ Coordinates r⁄z	
Element groups		
◯ Slab thickness	<u>0</u> k	
◯ System of loading	Cancel	
O Boundary conditions		
○ Rotational shell system	<u>H</u> elp	

Figure 10.30 "Data – In Plan" option box

To view the supports / boundary conditions on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 10.31 appears
- In this check group box, check both "Supports Reactions *RV*" and "Supports /Boundary Conditions" check box
- The user can choose any other data to be viewed
- Click "OK" button

View Grouping		×
Select items to display		
System of loading	~	
Supports/Boundary Conditions		<u>0</u> k
Rotational shell system		
Radial forces Nr		Cancel
Meridional moments My		_
Tangential moments Mt		Halo
Meridional forces Ny		<u>n</u> eip
Support Reactions RV	¥	Select All

Figure 10.31 "View Grouping" check group box

Figure 10.32 Element groups of the tank

Analysis of a chimney with a hyperbolic shell wall
Contents

Page

1	Description of the problem	3
2	Chimney geometry and properties	3
3	Numerical Analysis	5
4	Creating the project	7
4.1	Calculation method	7
4.2	Project identification	
4.3	FE-Net data	
4.4	Shell properties	
4.5	Supports/ Boundary Conditions	
4.6	Loads	
5	Carrying out the calculations	26
6	Viewing data and results	28

1 Description of the problem

An example of an axi-symmetrically chimney with hyperbolic shell wall under a uniform external pressure is selected to illustrate some features of *ELPLA* for analyzing shell elements.

2 Chimney geometry and properties

Consider a hyperbolic shell of revolution with the following geometry:

Throat radius	R_o	= 18	[m]
Throat height	H_l	= 45	[m]
Lower radius	R_u	= 36	[m]
Total height	H	= 72	[m]
Thickness of the wall	t	=0.24	[m]

Meridian equation of the hyperbolic shell of revolution is given by:

$$r^{2}(\xi) = \frac{R_{u}^{2} - R_{o}^{2}}{H_{l}^{2}} (\xi - H_{l})^{2} + R_{o}^{2}$$
$$r^{2}(\xi) = \frac{36^{2} - 18^{2}}{45^{2}} (\xi - 45)^{2} + 18^{2}$$
$$r^{2}(\xi) = 0.48(\xi - 45)^{2} + 324$$

where r [m] is the radius at height ξ [m].

Figure 11.1 shows the geometry the chimney with its hyperbolic shell wall with dimensions and supports, while the shell material are listed in Table 11.1.

Table 11.1 hyperboloid shell material

Modulus of Elasticity of the chimney material	E_c	$= 3 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the chimney material	v_c	= 0.3	[-]

Figure 11.1 Geometry of the chimney with dimensions and supports

3 Numerical Analysis

In the analysis, the height of the chimney is divided into 7 main segments; each segment is divided into a number of elements. Segment dimensions and number of elements of each segment are shown in Figure 11.2.

Figure 11.2 Segment dimensions and no. of elements in each segment

The chimney is exposed to a uniform external pressure of $p_s = -10$ [kN/m²] as shown in Figure 11.3

Figure 11.3 chimney with uniform external pressure of $p_s = -10 \text{ [kN/m^2]}$

4 Creating the project

In this section, the user will learn how to create a project for analyzing a chimney with hyperbolic shell wall under a uniform external pressure. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

4.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 11.4. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of forms. The first form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 11.4).

Figure 11.4 "Analysis Type" Form

In the "Analysis Type" Form in Figure 11.4, define the analysis type of the problem. As the analysis type is a hyperbolic shell problem, select "Analysis of rotational Shell" button, and check "Shell with an opening base" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Options" Form appears, Figure 11.5.

The last Form in the wizard is the "Options" Form, Figure 11.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Calculation Method	×
Options: Slab With Girders Additional Springs Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Strains in Soil Determining Strains in Soil Imfluence of Neighboring Foundations on Raft Imfluence of Additional Settlements on the Raft	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
O Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next > Save	2

Figure 11.5 "Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 11.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Hyperbolic Chimney". *ELPLA* will use automatically this file name in all reading and writing processes.

ve As				>
← → ∽ ↑ 🔒 → This PC → Local Dis	k (D:) → ELPLA12.2 projects → Tut	orial 2 Example 1	1	✓ ♂ Search Example 11
Organize 🔻 New folder				III 🕶 😮
^ Name	Date modified	Туре	Size	
			No items match your search.	
V				
Save as type: Isolated slab foundation	-files (*.PO1)			

Figure 11.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Hyperbolic Chimney] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

4.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 11.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a chimney with hyperbolic shell wall"
- Analysis of a children with hyperbolic shell wan
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification ×					
Project Io	lentification:					
Title	Analysis of a chimney with hyperbolic shell wall					
Date	03/01/2022					
Project	Axisymmetric Structures and Tanks					
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s					

Figure 11.7 "Project Identification" dialog box

4.3 FE-Net data

For the given problem, the chimney has a lower radius of $R_u = 36$ [m] and a total height of H = 72 [m]. the wall height is divided into 7 main segments, each segment is divided into a number of elements. To define the FE-Net for this tank, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 11.8. This wizard will guide you through the steps required to generate a FE-Net. As shown in Figure 11.8, the first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 11.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Hyperbolic shell" button
- Type 18 in the "Throat radius" edit box
- Type 72 in the "Total height" edit box
- Type 36 in the "Lower radius" edit box
- Type 45 in the "Throat height" edit box
- Type 7 in the "Number of segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Hyperbolic shell" Form appears Figure 11.9, *ELPLA* divides the height of the chimney wall into 7 equal segments, The user can edit the data of the segments individually by using "Modify" button, or all of them using "In Table" button.

Figure 11.9 "Hyperbolic shell" Form

Segment	data:					—		×
No. I [-]	Line start r1 [m]	Line start z1 [m]	Line end r2 [m]	Line end z2 [m]	^		<u>O</u> k	
▶ 1	36.00	0.00	31.78	7.20				
2	31.78	7.20	27.81	14.40			Insert	
3	27.81	14.40	24.22	21.60				
4	24.22	21.60	21.21	28.80			<u>С</u> ору	
5	21.21	28.80	19.05	36.00			Dalata	
6	19.05	36.00	18.04	43.20			Delete	
7	18.04	43.20	18.38	50.40			New	
8	18.38	50.40	20.01	57.60				
9	20.01	57.60	22.63	64.80		Se	end to <u>E</u> xc	el
10	22.63	64.80	25.96	72.00				
11	25.96	72.00	0.00	72.00		<u>P</u> as	te from E	cel
12	0.00	72.00	0.00	0.00			Help	
13	0.00	0.00	36.00	0.00			Telb	

Figure 11.10 "Segment data" Table

After modifying the coordinates of the segments, click "Finish" button, the FE-Net of the chimney appears in Figure 11.11

File FE-Net	👂 🐗 🐗 🍟 🎬 📕 🔜 Data Edit FE-Net	. 🚵 🎒 🍘 🗢 🛛 ELPLA - [Hyperbolic chin Setting View RFT Details	ney]			– 🗆 × ^ ?
FE-Net Generation -	 Slab Corners * Opening Corners * Reference Corners * 	Node Coordinates P Opening Corners Connectivity Nodes P References ~ Stab Corners	Ozoom In Ozoom Window Zoom Upper Right Zoom Opper Right Zoom Coopper Right Zoom Coop	undo	Redraw Clos	e
FE-Net Generation	Graphically	in table	Window	Undo	Refresh Clos	e
		0.00 19 22325.99.10 36.0	0			^
84.00						
72.00		Č				
60.00						
48.00						
36.00						
24.00						
12.00						
0.00			*			
						~
≪ r[m] = 58.65 z[n	n] = 37.91					>

Figure 11.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 11.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 11.11 to close the "FE-Net" window and return to *ELPLA* main window

4.4 Shell properties

To define the chimney properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 11.12 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, unit weight of the chimney, and element size.

Figure 11.12 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 11.13 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness. Then click "OK" button.

Figure 11.13 "Defining element groups" list box

To enter the unit weight of the chimney, choose "Unit weight" command from "Shell Properties" menu in Figure 11.12. The following dialog box in Figure 11.14 with a default unit weight of 25 [kN/m^3] appears, type 0 in the "Unit weight" edit box to neglect the self-weight of the chimney, then click "OK" button.

Unit weight			×
Unit weight		Gb [kN/m3] 0	
<u>O</u> k	New	<u>C</u> ancel	<u>H</u> elp

Figure 11.14 "Unit weight" dialog box

To define the element size of the chimney, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 11.12. The following form in Figure 11.15 appears, then:

- Select "Empty container" option
- uncheck the "Constant element sizes in z-direction" check box
- Click "Element size in each segment" button, the following list box in Figure 11.16 appears
- Define the size of the element in each segment as in the following list box in Figure 11.16, to keep the same number of elements in each segment
- Click "OK" button

illed material type/Element size			×
Filled material type:			
Empty container			
🔿 Liquid container			
⊖ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	0.00
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size: Constant element sizes in z-direction Element size in each shell segment	DI		[m] 0.2000 🛓
<u>Ok</u> <u>C</u> ancel			<u>H</u> elp

Figure 11.15 "Filled material type/Element size" Form

Element size in	each shell s	– 🗆 X
Segment No. I [-]	DI [m]	<u>0</u> k
▶ 1	1.000	<u>C</u> ancel
2	1.000	Insert
3	1.000	
4	0.750	<u>С</u> ору
5	0.750	
6	0.750	Delete
7	0.500	New
		<u> </u>
		Send to <u>E</u> xcel
		Paste from Excel
		<u>H</u> elp

Figure 11.16 "Element size in each segment" list box

After defining the chimney properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 11.12 to save the shell properties
- Choose "Close" command from "File" menu in Figure 11.12 to close the "Shell properties" window and return to *ELPLA* main window

4.5 Supports/ Boundary Conditions

To define the hinged support, choose "Supports/ Boundary Conditions" command from "Data" Tab. The following window in Figure 11.17 appears.

Figure 11.17 "Supports/ Boundary Conditions" Window

To define the support on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 11.17. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that has the support as shown in Figure 11.18
- After selecting the node, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu (Figure 11.17). The "Supports/ Boundary Conditions" dialog box in Figure 11.19 appears.

Figure 11.18 Selection of the node that has a hinged support

Example 11

In this dialog box

- Type 0 in the "Displacement u" edit box to define the horizontal fixed support
- Type 0 in the "Displacement w" edit box to define the vertical fixed support
- Click "OK" button

Supports/ Boundary Conditions	×
Node restraints: Displacement Displacement Rotation	u [cm] 0 w [cm] 0 Theta [Rad] F
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	<< <u>L</u> ess

Figure 11.19 "Supports/ Boundary Conditions" dialog box

Figure 11.20 Supports on the screen

After defining the supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 11.17 to save the data of supports
- Choose "Close" command from "File" menu in Figure 11.17 to close the "Supports/ Boundary conditions" window and return to the main window.

4.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 11.21 appears.

In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 11.21. In this example, the hyperbolic chimney is exposed to a uniform external pressure of $p_s = -10$ [kN/m²].

Figure 11.21 "Loads" Window

To define the uniform distributed load:

- choose "Edit Member Load" command from "Graphically" menu in Figure 11.21. When "Edit Member Load" command is chosen, the cursor will change from an arrow to a cross hair
- Double click on the element which is exposed to the uniform distributed load
- "Edit Member Load" dialog box in Figure 11.22 appears, type "-10" in "Member loads" edit box
- Click "OK" button

Edit Member Load	×
Load type Member loads Start from node No. End at node No.	Wind load V p [kN/m/m] -10 I = 4 J = 2
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	<< <u>L</u> ess

Figure 11.22 "Edit Member Load" dialog box

Example 11

Select Nodes Remove Nodal Loai Add Nodal Loads Gr	↓ Edit Nodal Load S Remove Member Load Edit Member Load aphically	H Nodal loads	Q Zoom In Q Zoom Window Zoom Upper Right Zoom Lower Left Q Zoom Out Q Xoom Vindow Zoom Upper Left Ur Q Original Size Zoom % 152 Zoom Lower Right Ur	ndo Redr	aw Close	
			0.00 19.122.34/25.529.10 36.00			
00 00 00 00						
0						
0						

Figure 11.23 "Loads" window after defining the uniform distributed load

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 11.21 to save the load data
- Choose "Close" command from "File" menu in Figure 11.21 to close the "Loads" window and return to *ELPLA* main window.

Creating the project of the chimney with a hyperbolic shell wall is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

5 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 11.24.

Figure 11.24 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 11.25 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 290 from 294 steps	<u>C</u> ancel

Figure 11.25 Analysis progress menu

Example 11

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 11.26. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	19540
Sum of contact pressures	[kN] =	19540
<u>O</u> k	<u>H</u> elp	

Figure 11.26 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

6 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 11.27).

Eile) 💕 🗓 🕽	Solver Results								-	٥	×
In Plan	lsometric View	Contour Lines I Isometric V ## Result Value Distribution	iew Circular Diagrams TSupport es EDeformations Punchin n Curves Principal moments Retation	Reactions > Deformation Vector J Shear >> Deformed Mesh al shell Results • +> Principal Stresses	s 🚔 Principal Strains Borin, Limit	g Logs/ Boring Depth Locations	Sections in shell wall	Display Tables I of Data •	Display Tables of Results •			

Figure 11.27 "Results" Tab

The "Results" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Supports reactions
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the radial forces in the shell wall

- From "Rotational shell results" command in the "Results" menu, choose "In Plan" command. The following option box in Figure 11.28 appears
- In the "Distribution of Internal Forces" option box, select "Radial forces Nr" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 11.29.

Distribution of Internal Forces			×
Select one item to draw:			
Radial forces Nr		al forces Ny	
O Meridional moments My	🔿 Tangentia	al moments Mt	
🔘 Horizontal deformations Vh		<u>0</u> k]
○ Vertical deformations Vv		<u>C</u> ancel	1
O Meridional rotations Vm			1
○ Shell deformation Delta		<u>H</u> elp	

Figure 11.28 "Distribution of internal forces" option box

Example 11

Figure 11.29 Radial forces in shell wall

To view the vertical deformations of the chimney wall

- From "Rotational shell results" command in the "Results" menu, choose "In Plan" command. The following option box in Figure 11.30 appears
- In the "Distribution of Internal Forces" option box, select "Vertical deformations Vv" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 11.31.

Figure 11.30 "Distribution of internal forces" option box

Figure 11.31 Vertical deformations of the chimney wall

To view the slab thickness of the chimney

- Choose "Slab thickness" from "In Plan" command in "Data" menu. The following option box in Figure 11.32 appears
- Click "OK" button

Data - In Plan	×
Select one item to draw:	
O Net numbering	⊖ Coordinates r⁄z
○ Element groups	
Slab thickness	<u>0</u> k
○ System of loading	Cancel
O Boundary conditions	
○ Rotational shell system	Help

Figure 11.32 "Data – In Plan" option box

To view the supports / boundary conditions on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 11.33 appears
- In this check group box, check "Supports /Boundary Conditions" check box
- The user can choose any other data to be viewed
- Click "OK" button

Figure 11.33 "View Grouping" check group box

Figure 11.34 Slab thickness with the load system

Example 12

Analysis of an irregular container resting on a layered soil

Contents

Page

1	Description of the problem	3
2 2.1	Container geometry and properties Soil properties	3
2.2	Numerical Analysis	5
3	Creating the project	6
3.1	Calculation method	6
3.2	Project identification	
3.3	FE-Net data	
3.4	Soil Properties	
3.5	Shell properties	
3.6	Loads	
4	Carrying out the calculations	
5	Viewing data and results	30

Example 12

1 Description of the problem

An example of an axi-symmetrically container with irregular shape resting on a layered soil is selected to illustrate some features of *ELPLA* for analyzing shell elements.

2 Container geometry and properties

A container having a base radius of a = 5 [m], middle wall radius of Rm = 7 [m] and a height of H = 14 [m] is considered as shown in Figure 12.1. Thicknesses of the container base, wall and roof are $t_b = 0.4$ [m], $t_w = 0.3$ [m], $t_r = 0.2$ [m], respectively. The container is filled with water and rests on layered soil. The container material and unit weight of the water are listed in Table 12.1.

Figure 12.1 Irregular container with dimensions

Table 12.1 Container material and water unit weight

Modulus of Elasticity	E_c	$= 2 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio	v_c	= 0.2	[-]
Unit weight of the container material	γ_c	= 25	$[kN/m^3]$
Unit weight of the water	γ_w	= 10	$[kN/m^3]$

The geometry and parameters of the container are:

Base:

_	Base radius	Rh = 5 [m]
-		$R_0 = 5$ [III]
-	Base thickness	tb = 0.4 [m]
Wall:		
-	Wall thickness	tw = 0.3 [m]
-	The first main segment parameters a	ire:
	• Height	<i>Hw</i> = 10 [m]
	Middle radius	<i>Rm</i> = 7 [m]
	• Upper radius	<i>Ro</i> = 5 [m]
	• Number of subsegments	Ns = 30
-	The second main segment parameter	rs are:
	• Height	Hw = 4 [m]
	Middle radius	<i>Rm</i> = 5 [m]
	• Upper radius	<i>Ro</i> = 5 [m]
	• Number of subsegments	Ns = 20
Roof:		
-	Flat roof type	
-	Number of subsegments $Ns = 1$	5

- Roof thickness tr = 0.2 [m]

2.1 Soil properties

The subsoil under the container consists of two layers, sandy clay and sand with gravel.

The soil properties of the sandy clay layer are: Modulus of elasticity for loading Ε = 35000 $[kN/m^2]$ Modulus of elasticity for reloading W = 105000 $[kN/m^2]$ Poisson's ratio = 0.3 [-] v_s while those of the sand with gravel layer are: Modulus of elasticity for loading $[kN/m^2]$ Ε = 80000 Modulus of elasticity for reloading $[kN/m^2]$ W = 240000Poisson's ratio = 0.3[-] v_s

2.2 Numerical Analysis

In the analysis, the wall height of the container is divided into two main segments, the first one is divided into 30 subsegments (30×0.3 [m]), while the second is divided into 20 subsegments (20×0.2 [m]). The flat roof is divided into 15 subsegments. The raft foundation is divided into 10 circular intervals as shown in Figure 12.2.

Figure 12.2 Finite element mesh of the container with a sector from the base
3 Creating the project

In this section, the user will learn how to create a project for analyzing a container resting on a layered soil. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

3.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 12.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of Forms. The first Form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 12.3).

Figure 12.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 12.3, define the analysis type of the problem. As the analysis type is a container resting on layered soil problem, select "Analysis of rotational shell" button, and check "Shell with a raft foundation" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Calculation Methods" Form appears, Figure 12.4.

To define the calculation method:

- Select the calculation method "7-Modulus of Compressibility (Elimination)"
- Click "Next" button to go to the next Form

Calculation Method	×
Calculation Method:	
🔿 1- Linear Contact Pressure (Conventional Method)	
🔿 2/3- Constant/Variable Modulus of Subgrade Reaction	
🔿 4- Modification of Modulus of Subgrade Reaction by Iteration	
○ 5- Isotropic Elastic Half Space	
○ 6- Modulus of Compressibility (Iteration)	
O 7- Modulus of Compressibility (Elimination)	
🔘 8- Modulus of Compressibility for Rigid Raft	
○ 9-Flexible Foundation	
Determining Modulus of Subgrade Reaction:	
O Modulus is calculated from half space	
Modulus is calculated from soil layers	
○ Modulus is defined by the user	
Help Load Save As Cancel < Back Next > Save	

Figure 12.4 "Calculation Methods" Form

The last Form in the wizard is the "Options" Form, Figure 12.5. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Since no option will be considered in the analysis, click the "Save" button.

Calculation Method	×
Options: Slab With Girders Additional Springs Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Straiss in Soil Determining Strains in Soil Image: Influence of Neighboring Foundations on the Raft Image: Influence of Additional Settlements on the Raft	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
○ Nonlinear analysis using German recommendations EA-Piles for load-settlement	
○ Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next > Save Diamondary 10.5 10.	

Figure 12.5 "Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 12.6. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Container on layered soil". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As								×
← → • ↑	> This PC > Local Disk (D:) > ELP	LA12.2 projects > Tutorial 2	2 > Example 12		~ (Search Example 12	
Organize 👻 🖪 N	ew folder						8==	- 🕐
^ Name	^	Date modified	Туре	Size				
				No items match your search.				
1								
File name	Container on layered soil							~
Save as <u>t</u> ype	Isolated slab foundation-files (*.PO1)							~
∧ Hide Folders						[<u>S</u> ave C	Cancel

Figure 12.6 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Container on layered soil] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.

3.2 Project identification

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 12.7 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a container resting on different soil layers"
- Type the date of the project in the "Date" edit box
- Type the word "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification X	
Project Id	lentification:	
Title	Analysis of a container resting on different soil layers	
Date	03/01/2022	
Project	Axisymmetric Structures and Tanks	
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s	

Figure 12.7 "Project Identification" dialog box

3.3 FE-Net data

For the given problem, the container has a base radius of a = 5 [m], and a height of H = 14 [m]. The height of the container is divided into two main segments, the first one is divided into 30 subsegments (30×0.3 [m]), while the second is divided into 20 subsegments (20×0.2 [m]), and the roof segment is divided into 15 subsegments. *ELPLA* has different procedures for defining the FE-Net. To define the FE-Net for this container, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 12.8. This wizard will guide you through the steps required to generate a FE-Net. As shown in Figure 12.8, the first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of shells. These net templates are used to generate standard nets.

Figure 12.8 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net of the container which has an irregular wall shape:

- In the "Shell type" options choose "Irregular shell" button To define the base of the container:
 - Type 5 in the "Tank base radius *Rb*" edit box
 - To define the first segment of the height of the container:
 - Choose "Curved segments" option
 - Type 10 in the "height *Hw*" edit box
 - Type 7 in the "middle radius *Rm*" edit box
 - Type 15 in the "Upper radius *Ro*" edit box, as the upper radius is the same as the base radius
 - Type 30 in the "Number of segments *Ns*" edit box

To define the second segment of the height of the container:

- Type 4 in the "height *Hw*" edit box
- Type 5 in the "middle radius *Rm*" edit box
- Type 5 in the "Upper radius Ro" edit box, as the upper radius is the same as the base radius
- Type 20 in the "Number of segments *Ns*" edit box

To define the roof of the container:

- Check the "Shell with covered roof" check box
- Choose "Flat roof" option
- Type 15 in the "Number of roof segments" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Irregular shell" Form containing the data of the segments appears in Figure 12.9, the user can edit the data of each segment individually or all of them by using "In Table" button, if it is necessary. Click "Next" button to go to the next Form.

Figure 12.9 "Irregular shell" Form

The next Form of the "Analysis of rotational shell" wizard is the "Net of Base" Form Figure 12.10. In this Form, the default values of the grid intervals appear, to edit the grid spacing in *x*-direction of the base, do the following steps in "Grid in *x*-direction" frame:

- Choose "Constant ring area" check box
- Type 10 in the "No. of grid intervals"
- Click "Finish" button to return to "FE-Net Data" window

Analysis of rotational shell	
Net of Base	
	Grids in x-direction:
	O Constant grid interval
Υ Å	Constant ring area
	O Variable grid interval
	No. of grid intervals
	<u>G</u> rid Intervals <u>R</u> efresh
	Geometry
	Radius Ru [m] 5.00
<u>H</u> elp <u>C</u> ancel	< <u>B</u> ack <u>N</u> ext > <u>F</u> inish

Figure 12.10 "Net of Base" Form

ELPLA will generate the FE-Net of the container with a sector from the base with 10 circular intervals. The following window in Figure 12.11 appears with the generated net.

Figure 12.11 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 12.11 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 12.11 to close the "FE-Net" window and return to *ELPLA* main window

3.4 Soil Properties

In *ELPLA*, there are three different soil models with several calculation methods. Therefore, the soil properties for each method are required to be defined according to the used soil model. In the current example, the soil model, which is used in the analysis, is "Layered Soil Model". This model requires that the subsoil have to be defined by boring logs. In the example, the boring log has multi-layers with different soil materials. The geotechnical data for each layer is unit weight of the soil γ_s and modulus of Elasticity for loading *E* and reloading *W* and *Poisson's* ratio *vs*.

To define the soil properties, choose "Soil Properties" command from "Data" Tab. The following "Soil Properties" Window in Figure 12.12 appears with a default-boring log.

😸 📄 💣 造 📦 File Soil Prope	🖝 😸 🌇 🔚 🔜 🔌 🎽 🥔 🏲 🍽 🗢 ELPLA - [Container rties Setting View RFT Details	on layered soil]	- 0	× ^ 🕜
Plot Parameters	E Line Formats A Font Fill Color Legend Hax. Ordinate Format	System Number Design Code ettings of Units Formats Parameters lain data		
	Gw 🕊 100			^
<		G F - 1000[Quind] 0 W - 000[Quind] 1000 GAM - 1[Quind]		~ >

Figure 12.12 "Soil Properties" window with a default-boring log

In Figure 12.12, soil properties are defined through the "Data" menu, which contains the following two commands:

- "Soil Data" command defines the individual boring logs
- "Main Soil Data" command defines the general data for all soil layers

To enter the soil properties for the boring log of the current example

- Choose "Soil Data" command from "Data" menu in the window of Figure 12.12 The following dialog box in Figure 12.13 with default-boring log data appears, Define the data of the boring log as the following

oil Data			>
Boring log No. 1 from 1 borin Layer No. 1 from 2 layers: Soil and rock symbols: Main soil type 1 Main soil type 2	T, Clay ~ -, No symbol ~	Geotechnical data of the layer: Soil properties are defined by Modulus of Elasticity E	^
submain soil 1 submain soil 2 Color Short text <u>C</u> opy Layer	s, sandy -, No symbol vi, violet T,s Insert Layer Delete Layer	E [kN/m2] 35000 FHI [°] 20 W [kN/m2] 20000 c [kN/m2] 10 GAM [kN/m3] 18 Nue [-] 0.3 Layer depth under the ground surface [m] 4.50	
Copy <u>B</u> oring log Delete Boring	Insert Boring Log:	X-coordinate of boring [m] 0.00 Y-coordinate of boring [m] 0.00 Boring Log Label BPN 1	
<u>0</u> k	<u>C</u> ancel	<u>N</u> ew <u>H</u>	elp

Figure 12.13 "Soil data" dialog box

In the "Geotechnical data of the layer" dialog group box in Figure 12.13, Soil properties are defined by Modulus of elasticity, define the geotechnical data of the first soil layer of the boring log as follows:

Ε	= 35000	$[kN/m^2]$
W	= 105000	$[kN/m^2]$
Gam	= 18	$[kN/m^3]$
С	= 10	$[kN/m^2]$
φ	= 20	[°]

In order to draw the soil layers by different symbols according to the German Standard DIN 4023, the soil type and color for each layer must be defined.

To define the soil type and color for the first layer, select "T, Clay" as the soil type in "Main soil type 1" combo box, and "S, Sand" as the submain soil type in "Submain soil 1" combo box in "Soil and rock symbols" dialog group box in Figure 12.13. The color of the layer according to the German Standard DIN 4023 will be automatically created. The user can change this color.

To enter the second layer of the boring log

- Click "Copy Layer" button in Figure 12.13. A layer with the same properties of the first layer will be copied
- Use the vertical scrollbar to move to the second soil layer. Layer No. will be typed automatically at the upper-left corner of the main dialog box of soil layers as a head title
- In "Geotechnical data of the layer" dialog group box in Figure 12.13, define the geotechnical data of the sand with gravel layer as follows:
 - E = 80000 [kN/m²]
 - W = 240000 [kN/m²]
 - Gam = 18 $[kN/m^3]$
 - C = 0 [kN/m²]
 - φ = 35 [°]
- Change the value of the layer depth under the ground surface from 4.5 [m] to 19.8 [m]
- From "Soil and rock symbols" dialog group box, choose "S, Sand" and "G, Gravel" in "Main soil type 1" and "Main soil type 2" combo boxes, as the main soil type of the second layer is sand with gravel

Note that: as the analysis is nonlinear, the unit weight of the soil, cohesion and angle of internal friction play no roles in the analysis.

Now all data and parameters for the boring log (Figure 12.14) have been entered.

File S	눱 📦 🖼 😸 🍟 Soil Properties S	I 🎬 🛃 🔣 ៉ 🦓 🌱 マ∣ ELPLA - etting View RFT Details	[Containe	r on layered	l soil]	- 0	^
List of	Soil Main Soil Data Data	Original Size Coom Out Coom Window Zoom Window	Undo	Ç Redraw	Close		
Graphically	Data	Window	Undo	Refresh	Close		
			4	T HILE AND	E=350000x1=0] W=200002x1=2] GGL(=18[2x1=2]		
		GW 7 19.	80 <u>19</u>	+G- 80	E=80000[kN/m2] W=240000[kN/m2] GAM=18[kN/m3]		

Figure 12.14 boring log

To enter the main soil data for all layers, choose "Main Soil Data" command from "Data" menu in Figure 12.12. The following dialog box in Figure 12.15 appears with default main soil data. The main soil data for the current example, which are required to be defined, are the settlement reduction factor α [-] and the groundwater depth under the ground surface G_w [m]. Any other data corresponding to main soil data are not required in this example. Therefore, the user can take these data from the default soil properties.

In the dialog box of Figure 12.15, enter the settlement reduction factor α [-] and the groundwater depth under the ground surface G_w [m]. Then click "OK" button.

Main Soil Data					×
Soil Properties Calculation parameters of flexibility coefficients					
Main Soil Data:					
Settlement reduction factor Alfa <= 1		Alfa	[-]	1.00	
Groundwater depth under the ground surface		Gw	[m]	19.8	
Bearing capacity factors:					
Bearing capacity factors are determined according to					
German Standard DIN 1054					
O Euro code EC 7	🔿 Terzaghi				
O Egyptian code ECP	O Meyerhof				
<u>O</u> k <u>C</u> ancel	<u>H</u> elp				

Figure 12.15 "Main Soil Data" dialog box

Main Soil Data	×
Soil Properties Calculation parameters of flexibility coefficients	
Flexibility coefficient c(i, i):	
The flexibility coefficient c(i, i) of the node i due to uniform load at that node is determined at	
It e characteristic point of the loaded area, where rigid settlement equal to flexible settlement	
○ the midpoint of the loaded area, where maximum settlement occurs	
○ the node i on the loaded area	
Flexibility coefficient c(i, j):	
Limit distance between nodei and j for determining the flexibility coefficient c(i, j) Zr [m] 100.00	
The flexibility coefficient c(i, j) of the node i is determined from O point load at node j	
uniform load at nodej	
<u>Ok</u> <u>C</u> ancel <u>H</u> elp	

Figure 12.16 "Calculation parameters of flexibility coefficients" dialog box

After entering all data and parameters of the boring log, do the following two steps:

- Choose "Save" command from "File" menu in Figure 12.12 to save the data of boring log
- Choose "Close" command from "File" menu in Figure 12.12 to close "Soil properties window and return to *ELPLA* main window.

3.5 Shell properties

To define the container properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 12.17 appears with default shell properties. The data of shell properties for the current example, which is required to be defined, are element groups, group regions, the unit weight of the container, and the filled material properties. Any other data corresponding to shell properties in the program menus are not required for this example.

Figure 12.17 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 12.18 appears. In this list box, enter E-Modulus, *Poisson's* ratio and slab thickness for the container base, wall and roof as they differ in thickness. Then click "OK" button to go to the next step.

Defining e	element group	s (with the sa	me thickness ar	nd	_		×
Group No.	E-Modulus of slab Eb	Poisson's ratio of slab	Slab thickness			<u>O</u> k Cancel	
[-]	[KIN/III2]	[-]	[m]			<u>_</u>	
1	2E+07	0.2	0.4			<u>I</u> nsert	
2	2E+07	0.2	0.3			-	
3	2E+07	0.2	0.2			<u>с</u> ору	
₩						Delete	
						<u>N</u> ew	
					Se	end to <u>E</u> xce	el
					<u>P</u> as	te from Ex	cel
						<u>H</u> elp	

Figure 12.18 "Defining element groups" list box

Defining the slab thickness for materials on the net may be carried out either graphically or numerically (in a table). In the current example, the user will define the slab thickness on the net graphically.

To define the slab thickness for the container roof

- Choose "Select Elements" command from "Graphically" menu in the window of Figure 12.17.
- When "Select Elements" command is chosen, the cursor will change from an arrow to a cross hair. A group of elements can be selected by holding the left mouse button down at the corner of the region. Then, drag the mouse until a rectangle encompasses the required group of elements. When the left mouse button is released, all elements in the rectangle are selected
- Select the elements that include the container roof as Figure 12.19
- Choose "Elements Groups" command from "Graphically" menu in the window of Figure 12.17, "Group Regions" dialog box Figure 12.20 appears
- Define the "Group No." of the roof elements as type "3"
- Repeat the previous steps to define the "Group No." of the container wall as type "2", while "Group No." of the wall elements will be as type "1", where type "1" is the default "Group No.", then click "OK" button

Figure 12.19 Selecting the elements that include the container roof

Group Regions	×
Group No.	[-] 3 ~
<u>Ok</u> ancel	<u>H</u> elp

Figure 12.20 "Group Regions" dialog box

To enter the unit weight of the container, choose "Unit weight" command from "Shell Properties" menu in the window of Figure 12.17. The following dialog box in Figure 12.21 with a default unit weight of 25 [kN/m^3] appears. Click "OK" button.

Unit weight		×
Unit weight	Gb [kN/m3] 25
<u>0</u> k <u>N</u>	ew <u>C</u> ancel	<u>H</u> elp

Figure 12.21 "Unit weight" dialog box

To define the filled material properties of the container, choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 12.17. The following form in Figure 12.22 appears.

illed material type/Element size			>
Filled material type:			
○ Empty container			
 Liquid container 			
⊖ Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	14
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	0.00
Bottom height of the granular material	H2	[m]	0.00
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	20
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	DI	I	[m] 1.0000 🚖
<u>O</u> k <u>C</u> ancel			<u>H</u> elp

Figure 12.22 "Filled material type/Element size" Form

To define the filled material properties of the container:

- Select "Liquid container" option
- Type 14 in the "Height of the liquid" edit box
- Type 9.81 in the "Unit weight of the liquid" edit box

To define the element size of the container:

- Check the "Constant element sizes in z-direction" check box
- Type 1 in the "Element size in each shell segment" edit box. The element size is chosen to be 1 [m] larger than the segment size in order to ignore further subdivision of the segments into smaller elements. In some cases, it is necessary to divide the segment into smaller elements in order to make the analysis more precise. Nevertheless, the final results of the internal forces appear only at nodes of segments
- Click "OK" button

Figure 12.23 "Shell Properties" window after defining the container properties

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 12.23 to save the shell properties
- Choose "Close" command from "File" menu in Figure 12.23 to close the "Shell properties" window and return to *ELPLA* main window

3.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 12.24 appears.

In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 12.24. In this example, there is not applied load, as the load has been already defined by the unit weight of the container material, while the hydrostatic pressure on the container is defined by the unit weight of water.

Figure 12.24 "Loads" Window

Do the following two steps:

- Choose "Save" command from "File" menu in Figure 12.24 to save the load data
- Choose "Close" command from "File" menu in Figure 12.24 to close the "Loads" Window and return to *ELPLA* main window

Creating the project is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

4 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 12.25.

Figure 12.25 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Determining flexibility coefficients of the soil
- Assembling the soil stiffness matrix
- Assembling the slab stiffness matrix
- Solving the system of linear equations (unsymmetrical matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

Carrying out all computations

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab window.
- The progress of all computations according to the defined method will be carried out automatically with displaying information through menus and messages.

Analysis progress

Analysis progress menu in Figure 12.26 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 51 from 153 steps	Cancel

Figure 12.26 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 12.27. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Total load	[kN] =	20591
Sum of contact pressures	[kN] =	20745
<u>0</u> k	<u>H</u> elp	

Figure 12.27 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

5 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 12.28).

	🖻 🛅 🗍		∰ 🌇 (™ 🗢 ELPLA	- [Container on layered soil]					-	٥	×
In Plan	sometric View	Solver Results Settin I Isometric View ## Result Values Contour Lines H Distribution Curves	Gircular Diagrams diagrams diagrams diagrams X Principal moments	T Support Reactions L Punching Shear Rotational shell Results ▼	 ✓ Deformation Vectors	Boring Logs/ Boring Limit Depth Locations	Sections in Sections in shell wall	Display Tables Display Table of Data • of Results •	5		

Figure 12.28 "Results" Tab

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Boring logs and limit depth
- Sections in the shell wall
- Sections in the shell base
- Display tables of data
- Display tables of results

To view sections in shell base

- Choose "Sections in shell base" command from "Section" menu. The following option box in Figure 12.29 appears
- In the "Sections in shell base" option box, select "Base contact pressures q" as an example for the results to be displayed
- Click "OK" button

The base contact pressures are now displayed as shown in Figure 12.30.

Sections in shell base			×
Select itemto display:			
○ Radial forces Nr	O Meridiona	l forces Ny	
O Meridional moments My	◯ Tangential	l moments Mt	
🔘 Horizontal deformations Vh			
○ Base settlements w	[<u>0</u> k]
Base contact pressures q	[Cancel	1
🔿 Soil stiffnesses ks	L		
O Meridional rotations Vm	L	<u>H</u> elp	

Figure 12.29 "Sections in shell base" option box

Figure 12.30 Base contact pressures in shell base

To view the base settlements

- Choose "Sections in shell base" command from "Section" menu. The following option box in Figure 12.31 appears
- In the "Sections in shell base" option box, select "Base settlements w" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 12.32.

Sections in shell base			×
Select itemto display:			
○ Radial forces Nr	O Meridion	al forces Ny	
O Meridional moments My	🔿 Tangentia	al moments Mt	
🔘 Horizontal deformations Vh			
Base settlements w		<u>0</u> k]
⊖ Base contact pressures q		<u>C</u> ancel	
🔘 Soil stiffnesses ks			
O Meridional rotations Vm		<u>H</u> elp	

Figure 12.31 "Sections in shell base" option box

To view element groups of the container

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 12.33 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

Figure 12.33 "Data – In Plan" option box

To view the internal forces on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 12.34 appears
- In this check group box, the user can choose any data to be viewed
- Click "OK" button

Figure 12.34 "View Grouping" check group box

Analysis of a circular silo for storing bulk materials

Contents

Page

1	Description of the problem	3
2	Silo geometry and properties	3
3	Pressure on the silo wall	4
4	Numerical Analysis	5
5 5.1 5.2 5.3 5.4 5.5 5.6	Creating the project Calculation method Project identification FE-Net data Shell properties Supports/ boundary conditions Loads	
6	Carrying out the calculations	25
7	Viewing data and results	27

1 Description of the problem

An example of a circular concrete silo is selected to illustrate some features of *ELPLA* for analyzing circular silos for storing bulk materials.

2 Silo geometry and properties

A circular concrete silo having a conical hopper at the bottom part and a conical roof at the upper part is considered. The main height of the silo is 8 [m] and its diameter is 4 [m]. The stored material is cement of a unit weight of 15.5 [kN/m³]. The angle of internal friction of cement is 25 [°] and the angle of wall friction is 25 [°]. The thickness of the roof and the wall is 0.28 [m], while the thickness of the hopper is 0.25 [m]. The conical hopper bottom slope is 45 [°], an opening at the bottom with diameter 0.5 [m] and hopper bottom height is 3 [m]. Table 13.1 shows the geometry of the silo with dimensions and support, while the silo shell material is listed in Table 13.1.

Figure 13.1 Geometry of the silo with dimensions and support

Table 13.1Silo shell materi

Modulus of Elasticity of the shell material	E_c	$= 2.486 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio of the shell material	v_c	= 0.2	[-]
Unit weight of the shell material	γ_c	= 23.563	$[kN/m^3]$

3 Pressure on the silo wall

According to *Janssen's* silo theory, the horizontal pressure P_h [kN/m²] on the silo wall at a depth h [m] below the free surface of the stored material is given by:

$$P_{h} = \frac{\gamma_{s} R}{\mu} \left[1 - \operatorname{Exp} \left(\frac{-\mu k h}{R} \right) \right]$$

in which k is the ratio of horizontal to vertical pressures, usually assumed equal to *Rankine's* coefficient of active earth pressure

$$k = \frac{1 - \sin \varphi}{1 + \sin \varphi}$$

h	Depth from the material top to the calculation section, [m]
k	Wall pressure coefficient, [-]
φ	Angel of internal friction of the stored material, [°]
γ_{s}	Unit weight of the stored material, [kN/m ³]
R=A/U	Hydraulic radius of the net horizontal cross section, [m]
μ=tan δ	Friction coefficient between the silo wall and the stored material
δ	Angle of the wall friction, [°]
$A=\pi D/4$	Cross-sectional area of the silo, [m ²]
$U=\pi D$	Parameter of the silo, [m]
D	Diameter of the silo, [m]

Using the above relations and equations, the lateral pressure P_h on the main silo wall various depth is determined and presented in Table 13.2.

Height from the top h [m]	Lateral pressure on the silo wall P_h [kN/m2]		
0.5	3.00		
1.5	8.22		
2.5	12.53		
3.5	16.10		
4.5	19.06		
5.5	21.50		
6.5	23.53		
7.5	25.20		

Table 13.2 Lateral pressure P_h on the main silo wall

4 Numerical Analysis

The wall of the silo is divided into three parts:

- 1. The roof part where no lateral pressure is applied on it
- 2. The main silo part where the lateral pressure p_h is applied.
- 3. The hopper part where no lateral pressure is applied on it

In the analysis, these three parts are divided into 14 segments; each segment is 1.0 [m]. Then these segments are divided into a number of elements, each element is 0.2 [m]. Segment dimensions and number of segments are shown in Figure 13.2.

Figure 13.2 Segment dimensions

5 Creating the project

In this section, the user will learn how to create a project for analyzing a circular concrete silo. The project will be processed gradually to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

5.1 Calculation method

Choose "New Project" command from the "File" menu. The following "Calculation Methods" wizard appears, Figure 13.3. This wizard will help the user to define the analysis type and the calculation method of the problem through a series of forms. The first form of "Calculation Methods" wizard is the "Analysis Type" Form (Figure 13.3).

Figure 13.3 "Analysis Type" Form

In the "Analysis Type" Form in Figure 13.3, define the analysis type of the problem. As the analysis type is a circular concrete silo problem, select "Analysis of rotational Shell" button, and check "Shell with an opening base" option, then click "Next" button to go to the next Form. After clicking "Next" button, the "Options" Form appears, Figure 13.4.

The last Form in the wizard is the "Options" Form, Figure 13.4. In this Form, *ELPLA* displays some available options corresponding to the chosen numerical model, which differ from model to other. Select "Supports/ Boundary Conditions", then click the "Save" button.

Calculation Method	×
Options: Additional Springs Additional Springs Supports/ Boundary Conditions Determining Limit Depth Concrete Design Nonlinear Subsoil Model Determining Displacements in Soil Determining Stresses in Soil Determining Strains in Soil Image: The Substant Stresses in Su	
Select All	
Nonlinear analysis of piled raft:	
Nonlinear analysis using a hyperbolic function for load-settlement	
🔿 Nonlinear analysis using German standard DIN 4014 for load-settlement	
O Nonlinear analysis using German recommendations EA-Piles for load-settlement	
O Nonlinear analysis using a given load-settlement curve	
Help Load Save As Cancel < Back Next > Save	

Figure 13.4 "Options" Form

After clicking "Save" button, the "Save as" dialog box appears, Figure 13.5. In this dialog box type a file name for the current project in "File name" edit box. For example, type "Silo". *ELPLA* will use automatically this file name in all reading and writing processes.

Save As							×
← → • ↑ <mark> </mark>	-> This PC > Local Disk (D:) > ELPLA12.2 projects > Tutorial 2 > Example 13 v 0					Search Example 13	
Organize 🔻 Ne	w folder						?
^ Name	^	Date modified	Туре	Size			
				No items match your search.			
~							
File <u>n</u> ame:	Silo						~
Save as <u>t</u> ype:	Isolated slab foundation-files (*.PO1)						\sim
∧ Hide Folders					[<u>S</u> ave Cancel	

Figure 13.5 "Save as" dialog box

ELPLA will activate the "Data" Tab. In addition, the file name of the current project [Silo] will be displayed instead of the word [Untitled] in the *ELPLA* title bar.
5.2 **Project identification**

The user can enter three lines of texts to describe the problem and the basic information about the task. These texts are required only for printing and plotting the data and results. Project identification does not play any role in the analysis. The three lines are optionally and maybe not completely entered. To identify the project, choose "Project Identification" command from the "Data" Tab. The dialog box in Figure 13.6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a circular silo for storing bulk materials"
- Type the date of the project in the "Date" edit box
- Type "Axisymmetric Structures and Tanks" in the "Project" edit box
- Click "Save" button

Project Ide	entification	×
Project Id	lentification:	
Title	Analysis of a circular silo for storing bulk materials	
Date	13/01/2022 ~	
Project	Axisymmetric Structures and Tanks	
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s	

Figure 13.6 "Project Identification" dialog box

5.3 FE-Net data

For the given problem, a circular concrete silo having a conical hopper at the bottom part and a conical roof at the upper part is considered. The main height of the silo is 8 [m] and its diameter is 4 [m], The wall of the silo is divided into three parts, these three parts are divided into 14 segments; each segment is 1.0 [m]. Then these segments are divided into a number of elements, each element is 0.1 [m]. To define the FE-Net for this silo, choose "FE-Net Data" command from the "Data" Tab. "Analysis of rotational shell" wizard appears as shown in Figure 13.7. This wizard will guide you through the steps required to generate a FE-Net, the first Form of the wizard is the "Shell type" Form, which contains a group of templates of different shapes of nets. These net templates are used to generate standard nets.

Figure 13.7 "Analysis of rotational shell" wizard with "Shell type" Form

To generate the FE-Net

- In the "Shell type" options choose "Irregular shell" button
- Type 0.25 in the "Tank base radius *Rb*" edit box, as the opening diameter at the bottom is 0.5 [m]

To identify the hopper part

- Type 3 in the "Height *Hw*" edit box
- Type 2 in the "Upper radius *Ro*" edit box
- Type 3 in the "Number of segments Ns" edit box

To identify the main wall

- Type 8 in the "Height *Hw*" edit box
- Type 2 in the "Upper radius *Ro*" edit box
- Type 8 in the "Number of segments *Ns*" edit box

To identify the roof part

- Type 3 in the "Height *Hw*" edit box
- Type 0.1 in the "Upper radius *Ro*" edit box, which is approximately zero
- Type 3 in the "Number of segments *Ns*" edit box
- Click "Next" button to go to the next Form

After clicking "Next" in "Analysis of rotational shell" wizard, the following "Irregular shell" Form containing the data of the segments appears in Figure 13.8, the user can edit the data of each segment individually or all of them by using "In Table" button, if it is necessary.

Analysis of rotational shell	
Irregular shell:	
	Segment No. 1 from 17 segments:
	Segment data:
	Start poistion r1 [m] 0.25
	z1 [m] _{0.00}
z	End position r2 [m] 0.83
	z2 [m] 1.00
	In Table
	Refresh
	New
	Insert Segment
R	
	<u>D</u> elete Segment
	<u>C</u> opy Segment
Help Cancel	< Back Next > Finish

Figure 13.8 "Irregular shell" Form

Click "Finish" in "Analysis of rotational shell" wizard, the generated FE-Net appears Figure 13.9.

🗄 🗋 💕 🐫 🖡 File FE-Net	👂 🖼 🥵 🍟 🎬 🛃 💀 Data Edit FE-Net	L 🎽 🎲 🍽 〒│ ELPLA - [Silo] Setting View RFT Details					- 0)	× ?
FE-Net Generation •	Slab Corners * P Opening Corners * Reference Corners *	Node Coordinates Popening Corners Connectivity Nodes References ~ Slab Corners Stab Corners	Q Zoom In Q Zoom Window Zoom Upper Right Zoom Lower Left Q Zoom Out Q Move N Zoom Upper Left Q Original Size Zoom % 111 N Zoom Lower Right	Undo	Ç Redraw	Close		
FE-Net Generation	Graphically	In table	Window	Undo	Refresh	Close		_
		0.0/2807831.342.00						^
14.00 13.00 12.00 11.00 9.00 8.00 7.00 6.00 5.00 4.00 2.00 1.00 0.00								
6		II II II I						~
r[m] = 10.00 z[m	n] = -0.66		-					

Figure 13.9 Generated FE-Net

After finishing the generation of the FE-Net, do the following two steps:

- Choose "Save" command from "File" menu in Figure 13.9 to save the data of the FE-Net
- Choose "Close" command from "File" menu in Figure 13.9 to close the "FE-Net" window and return to *ELPLA* main window

5.4 Shell properties

To define the silo properties, choose "Shell Properties" command from "Data" Tab. The following window in Figure 13.10 appears with default shell properties. The data of shell properties for the current example, which are required to be defined, are element groups, group regions, unit weight of the silo material, filled material properties and element size.

Figure 13.10 "Shell Properties" Window

Choose "Element groups" command from "In table" menu. The following list box in Figure 13.11 appears. In this list box, define E-Modulus, *Poisson's* ratio and slab thickness for both the wall and the hopper of the silo as they differ in thickness. Then click "OK" button.

Defining el	ement group	s (with the sa	me thickness a	nd	_		×
Group No. I [-]	E-Modulus of slab Eb [kN/m2]	Poisson's ratio of slab Nue [-]	Slab thickness d			<u>O</u> k <u>C</u> ancel	
1	2.486E+07	0.2	0.28			Insert	
2	2.486E+07	0.2	0.25				
b #						<u>С</u> ору	
						<u>D</u> elete	
						<u>N</u> ew	
					Se	end to <u>E</u> xce	el
					<u>P</u> as	te from Ex	cel
						<u>H</u> elp	

Figure 13.11 "Defining element groups" list box

Defining the slab thickness for materials on the net may be carried out either graphically or numerically (in a table). In the current example, the user will define the slab thickness on the net graphically.

To define the slab thickness for the silo hopper

- Choose "Select Elements" command from "Graphically" menu in the window of Figure 13.10
- When "Select Elements" command is chosen, the cursor will change from an arrow to a cross hair. A group of elements can be selected by holding the left mouse button down at the corner of the region. Then, drag the mouse until a rectangle encompasses the required group of elements. When the left mouse button is released, all elements in the rectangle are selected
- Select the elements that include the silo hopper as Figure 13.12
- Choose "Elements Groups" command from "Graphically" menu in the window of Figure 13.10, "Group Regions" dialog box Figure 13.13 appears
- Define the "Group No." of the hopper elements as type "2", while "Group No." of the wall and the roof elements will be as type "1", where type "1" is the default "Group No.", then click "OK" button

Analyzing Axisymmetric Structures and Tanks by ELPLA

File Shell Pro	oerties Setting	R 🛅 🎒 🌄 (객 국) View RFT Details					- 0	× ^ ?
🖉 Select Elements	Element groups	🄀 Unit weight 🛛 🗃 Foundation Level	🗨 Zoom In 🛛 🥘 Zoom Window 📝 Zoom Upper Right 🖌 Zoom Lower Left		1			
Element groups	Group Regions	1 Foundation Depth 🚽 Filled material type/Element size	🔍 Zoom Out 🛛 🖉 Move 🔨 Zoom Upper Left	Lindo Element	Padraw			
		🔯 Origin Coordinates	🔍 Original Size 🛛 Zoom % 211 🔹 🔨 Zoom Lower Right	groups *	Realaw	ciose		
Graphically	In table	Shell Properties	Window	Undo	Refresh	Close		
			0.00.3 0078 1.44 2.0					^
6.0								
5.0								
4.0								
3.0								
2.0								
1.0								
0.0								
								v
<pre>r[m] = 4.4 z[m] =</pre>	2.3 Radial forces		-					>

Figure 13.12 Selecting the elements that include the silo hopper

Group Regions	×
Group No.	[-] 2 ~
<u>O</u> k <u>C</u> ancel	<u>H</u> elp

Figure 13.13 "Group Regions" dialog box

To enter the unit weight of the silo material, choose "Unit weight" command from "Shell Properties" menu in Figure 13.10. The following dialog box in Figure 13.14 with a default unit weight of 25 $[kN/m^3]$ appears, type 23.5 in the "Unit weight" edit box, then click "OK" button.

Unit weight	:	×
Unit weight	Gb [kN/m3] 23.5	
<u>O</u> k	New Cancel Help	

Figure 13.14 "Unit weight" dialog box

To define the filled material properties:

- Choose "Filled material type/Element size" command from "Shell Properties" menu in Figure 13.10. The following form in Figure 13.15 appears
- Select "Granular material container" option
- Define the granular material properties as follows in Figure 13.15

To define the element size of the container:

- Check the "Constant element sizes in z-direction" check box
- Type 0.2 in the "Element size in each shell segment" edit box
- Click "OK" button

Filled material type/Element size			×
Filled material type:			
 Empty container 			
O Liquid container			
Granular material container			
Liquid Properties:			
Height of the liquid	HI	[m]	0.0
Unit weight of the liquid	γw	[kN/m3]	9.81
Granular material properties:			
Top height of the granular material	H1	[m]	11.0
Bottom height of the granular material	H2	[m]	3.0
Unit weight of the granular material	γs	[kN/m3]	15.50
Angle of internal friction of the granular material	φ	[°]	25
Angle of the wall friction	δ	[°]	25
Element size:			
Constant element sizes in z-direction			
Element size in each shell segment	DI		[m] 0.2000 🛓
<u>O</u> k <u>C</u> ancel			<u>H</u> elp

Figure 13.15 "Filled material type/Element size" Form

Example 13

📇 i 🗅 🖙 🛍 🏮) 🗟 📽 " 🐩 🛃	R 🖺 🌐 🎝 (** = 1							_	o ×	:
File Shell P	operties Setting	View RFT Details								^	?
_/ Select Elements	Element groups	🛠 Unit weight 🛁 Foundation Level	🔍 Zoom In	Q Zoom Window	Zoom Upper Right Zoom Lower	Left 🕥	2				
Element group	Group Regions	Foundation Depth Filled material type/Element size	C Zoom Out	Zoom % 111 *	Zoom Upper Left	Undo-Display	Redraw	Close			
Graphically	In table	Shell Properties	Cirginal Size	2001178 111 V	indow	Values - Undo	Refresh	Close			
		0.0.3028 1.4 2.0									^
		z									
14.0		Qui i i									
13.0											
12.0		n de la companya de l									
11.0											
10.0											
9.0											н.
8.0											
7.0											
7.0											
6.0											
5.0											
4.0											
3.0		0									
2.0		2									
1.0		2 1									
0.0		2									
		R R									
<		İ									~
r[m] = 14.2 z [m	1 - 10.0 Radial forces										

Figure 13.16 "Shell Properties" window after defining the silo properties

After entering the shell properties, do the following two steps:

- Choose "Save" command from "File" menu in Figure 13.16 to save the shell properties
- Choose "Close" command from "File" menu in Figure 13.16 to close the "Shell properties" window and return to *ELPLA* main window

5.5 Supports/ boundary conditions

To define the support, choose "Supports/ Boundary Conditions" command from "Data" Tab. The following window in Figure 13.17 appears.

🗮 🗈 🖙 🏷 📴 📽 🎼 🐐 🏹 📮 💀 🖄 🖨 🔿 🎮 🗉 ELPLA - [Silo]	-	- 0 ×
File Supports/ Boundary Conditions Setting View RFT Details		~ 🕐
-th-Select Nodes Iteration Remove Supports/Boundary Conditions Remove Hinge Add Supports/Boundary Conditions Cell Hinge	Node restraints Q Zoom In Q Zoom Window Zoom Upper Right Zoom Lower Left Image: Comparison of the comp	
datela zia zita zita zita zita zita zita zita	in table window Ondo Refresh Close	
7.00		
		v
X [m] = 12.13 Y [m] = 12.35		>

Figure 13.17 "Supports/ Boundary Conditions" Window

To define the support on the net:

- Choose "Select Nodes" command from "Graphically" menu in Figure 13.17. When "Select Nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the node that has the support as shown in Figure 13.18
- After selecting the node, choose "Add Supports/ Boundary Conditions" command from "Graphically" menu (Figure 13.17). The "Supports/ Boundary Conditions" dialog box in Figure 13.19 appears

Example 13

Figure 13.18 Selection of the node that has the support

In this dialog box

- Type 0 in the "Displacement w" edit box to define the vertical fixed support
- Click "OK" button

Figure 13.19 "Supports/ Boundary Conditions" dialog box

Example 13

Figure 13.20 "Supports/ Boundary Conditions" window after defining the supports

After defining the supports, do the following two steps

- Choose "Save " command from "File" menu in Figure 13.20 to save the data of supports
- Choose "Close" command from "File" menu in Figure 13.20 to close the "Supports/ Boundary conditions" window and return to the main window

5.6 Loads

To define the loads, choose "Loads" command from "Data" Tab. The following window in Figure 13.21 appears.

In *ELPLA*, entering loads may be carried out either numerically (in a table) or graphically using the commands of "Loads" Tab in Figure 13.21. In this example, there is not applied load, as the lateral load on the main wall has been already defined by P_h .

Figure 13.21 "Loads" Window

After finishing the definition of load data, do the following two steps:

- Choose "Save" command from "File" menu in Figure 13.21 to save the load data
- Choose "Close" command from "File" menu in Figure 13.21 to close the "Loads" window and return to *ELPLA* main window

Creating the project of the silo is now complete. It is time to analyze this project. In the next section, you will learn how to use *ELPLA* for analyzing projects.

6 Carrying out the calculations

To analyze the problem, switch to "Solver" Tab, Figure 13.22.

Figure 13.22 "Solver" Tab

ELPLA will active the "Individual Calculations" list, which contains commands of all calculations. Commands of calculation depend on the used calculation method in the analysis. For this project, the items that are required to be calculated are:

- Assembling the load vector
- Assembling the slab stiffness matrix
- Solving the system of linear equations (band matrix)
- Determining deformation, internal forces, contact pressures

These calculation items can be carried out individually or in one time

To carry out all computations in one time

- Choose "Computation of all" command from "Solver" Tab window.

The progress of all computations according to the defined method will be carried out automatically with displaying Information through menus and messages.

Analysis progress

Analysis progress menu in Figure 13.23 appears in which various phases of calculation are progressively reported as the program analyzes the problem. In addition, a status bar down of the "Solver" Tab window displays Information about the progress of calculation.

Solving the system of linear equations (band matrix)	
Solving the system of linear equations!	
Time remaining = 00:00:00	
I = 60 from 153 steps	Cancel

Figure 13.23 Analysis progress menu

Check of the solution

Once the analysis is carried out, a check menu of the solution appears, Figure 13.24. This menu compares between the values of actions and reactions. Through this comparative examination, the user can assess the calculation accuracy.

Check of the solution		
V - Load		
Totalload	[kN] =	967.2
Sum of contact pressures	[kN] =	967.2
<u>O</u> k	<u>H</u> elp	

Figure 13.24 Menu "Check of the solution"

Click "OK" button to finish analyzing the problem.

7 Viewing data and results

ELPLA can display and print a wide variety of results in graphics, diagrams or tables through the "Results" Tab. To view the data and results of a problem that has already been defined and analyzed graphically, switch to "Results" Tab (Figure 13.25).

Image: Image	-	٥	× ^ ?
Image: Sometric View Contour Circular Diagram T Support Reactions Deformation Vectors Deformation Vectors <td< td=""><td></td><td></td><td></td></td<>			

Figure 13.25 "Results" Tab

The "Result" Tab contains the commands of drawing. These commands depend on the used calculation method in the analysis. For the current example, the commands for presenting the data and results are:

- Data in the plan
- Rotational shell results
- Support Reactions
- Sections in shell wall
- Display tables of data
- Display tables of results

To view the radial forces on the silo wall

- Choose "Sections in shell wall" command from "Section" menu. The following option box in Figure 13.26 appears
- In the "Sections in shell wall" option box, select "Radial forces *Nr*" as an example for the results to be displayed
- Click "OK" button

The Results are now displayed as shown in Figure 13.27.

Figure 13.26 "Sections in shell wall" option box

Figure 13.27 Radial forces on the silo wall

To view element groups of the silo

- Choose "Element groups" from "In Plan" command in "Data" menu. The following option box in Figure 13.28 appears
- In the "Data In Plan" option box, select "Element groups" as an example for the results to be displayed
- Click "OK" button

×
⊖ Coordinates r⁄z
<u>0</u> k
Cancel
<u>H</u> elp

Figure 13.28 "Data – In Plan" option box

To view the supports / boundary conditions on the FE-Net and any other data

- From "Options" menu in the "Graphic" tab, choose "View Grouping" command. The "View Grouping" check group box in Figure 13.29 appears
- In this check group box, check "Radial forces *Nr*", "Supports Reactions *RV*" and "Supports /Boundary Conditions" check boxes
- The user can choose any other data to be viewed
- Click "OK" button

View Grouping		×
Select items to display		
System of loading	~	
Supports/Boundary Conditions		<u>0</u> k
Rotational shell system		
Radial forces Nr		Cancel
Meridional moments My		_
Tangential moments Mt		Halp
Meridional forces Ny		<u>II</u> cip
Support Reactions RV	~	Select All

Figure 13.29 "View Grouping" check group box

Analyzing Axisymmetric Structures and Tanks by ELPLA

Figure 13.30 Element groups of the silo