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ABSTRACT 

Barrette is a vital solution to minimize soil displacement problems of massive 

structures due to its high axial and lateral load capacities. The traditional methods 

for analyzing barrettes are mainly modeling the barrette and surrounding soil 

using three-dimensional finite elements. These methods require a huge-

computational effort. In this thesis, a numerical hybrid technique is developed 

for analyzing laterally loaded barrettes and barrette groups. In this technique, the 

flexibility coefficient is used to determine the soil deformation based 

on Mindlin’s solution considering the full interaction between barrettes and 

surrounding soil. Also, it takes into consideration the group interaction of every 

single barrette on the group of barrettes. On the other hand, the barrette in the 

vertical direction is discretized to one-dimensional finite elements. The soil 

stiffness along the barrette surface is reduced by the Composed Coefficient 

Technique (CCT) to be one-dimensional along the barrette vertical axis having 

variable displacements along the barrette height. This technique enables adding 

the soil stiffness to the barrette stiffness matrix generating the full stiffness matrix 

of the single barrettes/barrette groups to be solved. As a result, the number of 

equations is reduced. Besides the soil nonlinearity using the hyperbolic function 

is considered. A series of validations are carried out to verify the hybrid technique. 

In addition, a comparative study of laterally loaded single barrettes in a real-

subsoil is carried out, in which east Port-Said soil properties are considered. Also, 

parametric studies are carried out to investigate the behavior of laterally loaded 

barrette/barrette groups. The study presents guidelines for analyzing laterally 

loaded single barrettes and barrette groups. 
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NOTATIONS 

L Length of the barrette in X-direction, [m]. 

W Width of the barrette in Y-direction, [m]. 

H Height of the barrette in Z-direction, [m]. 

l Length of the element in X-direction, [m]. 

w Width of the element in Y-direction, [m]. 

h Height of the element in Z-direction, [m]. 

c Depth of the point load j from the ground surface, [m]. 

z Depth of the studied point i from the ground surface, [m]. 

r Radial distance between points i and j, [m]. 

x Horizontal distance in plan between points i and j, [m]. 

Es Modulus of elasticity of the soil, [kN/m2]. 

νs Poisson’s ratio of the soil, [-].  

Gs Soil shear modulus, [kN/m2]. 

usi Soil displacement in the x-direction of any shaft or base node i, [m]. 

Qxj Contact force in the x-direction on any shaft or base node j, [kN]. 

n Total number of nodes. 

Ixi, j Flexibility coefficient of node i due to a concentrated force in the x-

direction on node j, [m/kN]. 

{us} n Soil displacement vector of the single barrette in the x-direction. 

{Qx} n Contact force vector of the single barrette in the x-direction. 

[Ix] n × n Soil flexibility matrix of the single barrette. 

[Sx]  n × n Soil stiffness matrix of the single barrette. 

Sxi, j  Soil stiffness coefficient of the single barrette, [kN/m]. 

nb  Number of barrette levels. 

Sxbi, j  Composed coefficient of level i in 1D single barrette due to a 

concentrated force in the x-direction at level j, [kN/m]. 

ubi  Soil displacement of level i in 1D single barrette in the x-direction, [m].  

Qxbi  Contact force of level i in 1D single barrette in the x-direction, [kN]. 

{ub}  nb Soil displacement vector of the single barrette levels in the x-direction.  



xx 

 

{Qx}  nb Contact force vector of the single barrette levels in the x-direction. 

[Sxb]  nb × nb Composed soil stiffness matrix of the single barrette. 

Ep Modulus of elasticity of the barrette material, [kN/m2]. 

Ipe Moment of inertia of the barrette element e, [m4].  

he Height of the barrette element e, [m]. 

Pxi External force in the x-direction on node i, [kN]. 

Myi External moment about the y-axis on node i, [kN.m]. 

ui Displacement in the x-direction of node i, [m]. 

θyi Rotation about the y-axis at node i, [º]. 

{Px} 2×nb Vector of applied load on the single barrette levels. 

{δx} 2×nb Deformation vector of the single barrette levels. 

[Bx] (2×nb)×(2×nb) Beam stiffness matrix of the single barrette levels. 

ui,j Lateral soil displacement on any shaft or base node i due to a lateral point 

load at point j, [m]. 

Esi Soil modulus of elasticity of layer i, [kN/m2]. 

νsi Poisson’s ratio of the soil of layer i, [-]. 

un Nonlinear displacement in the x-direction of the barrette, [m].  

Hlim Horizontal limit load, [kN]. 

ng Total number of nodes in barrette group.  

usgi Soil displacement of the barrette group in the x-direction on any shaft or 

base node i, [m]. 

Qxgj Contact force of the barrette group in the x-direction on any shaft or base 

node j, [kN]. 

Ixgi, j Flexibility coefficient of the barrette group of node i due to a concentrated 

force in the x-direction on node j, [m/kN]. 

{usg} ng Soil displacement vector of the barrette group in the x-direction. 

{Qxg} ng Contact force vector of the barrette group in the x-direction.  

[Ixg] ng × ng Soil flexibility matrix of the barrette group. 

[Sxg] ng × ng Soil stiffness matrix of the barrette group. 

Sxg i, j  Soil stiffness coefficient of the barrette group, [kN/m]. 
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ubgi  Soil displacement of the barrette group levels in the x-direction in node i 

of 1D barrette group, [m].  

Qxbgi  Contact force of the barrette group levels in the x-direction on node i of 

1D barrette group, [kN]. 

Sxbg i, j  Composed coefficient of the barrette group of level i due to a concentrated 

force in the x-direction at level j, [kN/m]. 

nbg  Total number of barrette levels in barrette group. 

{ubg}  nbg Soil displacement vector of the barrette group levels in the x-direction.  

{Qxbg} nbg Contact force vector of the barrette group levels in the x-direction.  

[Sxbg]  nbg × nbg Composed soil stiffness matrix of the barrette group. 

Pxgi Barrette group external force in the x-direction at level i, [kN]. 

Mygi Barrette group external moment about the y-axis at level i, [kN.m].  

ugi Barrette group displacement in the x-direction of level i, [m]. 

θygi Barrette group rotation about the y-axis at level i, [º]. 

{Pxg} 2×nb Vector of applied load on barrettes in the barrette group levels.  

{δxg} 2×nb Deformation vector of the barrette group levels. 

[Bxg] (2×nb)×(2×nb) Beam stiffness matrix of the barrette group levels. 

neq Equivalent horizontal modulus of soil reaction, [kN/m3]. 

ni Horizontal modulus of soil reaction for layer i, [kN/m3]. 

Hi The barrette height that crosses layer i, [m]. 

t Elastic barrette height, [m].  

He Effective barrette height, [m]. 

Eseq Equivalent modulus of elasticity of the soil, [kN/m2]. 

Pxo The lateral load at the barrette head, [kN]. 

Myo The bending moment at the barrette head, [kN.m]. 

uo The barrette head displacement, [cm]. 

Mmax The maximum bending moment along the barrette height , [kN.m]. 

Kp Passive earth pressure coefficient, [-]. 

γ` Submarged unit weight of soil, [kN/m3]. 

D The diameter of the pile with the same moment of inertia, [m]. 

cu Undrained cohesion of clay, [kN/m2].  
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Hult Ultimate lateral load, [kN]. 

S  Spacing between the centerline of barrettes, [m]. 

Rs  Single barrette displacement ratio Rs, [-]. 

us  Studied single barrette displacement with different load directions α, [m].  

uo  Single barrette displacement with load direction α = 0˚, [m]. 

Rg  Barrette group displacement ratio Rg, [-]. 

ug Studied barrette group displacement, [m]. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General 

The civilization development, especially that has taken place in Egypt in recent 

times, such as the tallest tower in Africa with a height of 345 m, Towers of the 

financial and business district, New El Alamein Towers, and others. These mega 

structures cause extreme heavy axial and lateral loads, which need a special 

system of foundations to transmit these loads into the surrounding soils. Many 

structural problems for these structures arise mainly from large soil 

displacements. Barrette foundation is a major solution for avoiding large soil 

displacement problems. It reduces soil displacements, especially if the underlying 

layers contain weak soil, because of it is large dimensions compared to piles. 

Several barrettes research appeared at the end of the last century. It became more 

frequently used at the beginning of the 21st century, especially in the past ten 

years. Early researches were based on field results of loading tests and using the 

three-dimensional finite element (3D-FE) to analyze it. Few researches are 

available for these loading tests due to the difficulty of conducting barrettes 

loading tests because of their high vertical and lateral load capacities. These 

capacities reached a world record test load of 363 MN. Different methods of 

analyzing barrettes appeared based on traditional methods of analyzing piles. 

These methods are mainly modeling the barrette and surrounding soil using 3D-

FE, which requires large-computational effort. So, large-systems of equations 

need to be solved. Similar methods for analyzing piles are used as a less 

complicated problem than that of the barrettes. Usually, Piles are circular with a 

relatively smaller cross-sectional area, while barrettes are rectangular with a large 

cross-sectional area. Therefore, piles are treated as a beam element subjected to 

point loads on its nodes, while barrettes are treated as block members. Although 

these methods are used for analyzing barrettes by treating barrettes as piles with 

equivalent cross-section area, Its disadvantage is that it ignores the three-

dimensional natural geometry of the barrette and soil. 

The Composed Coefficient Technique (CCT) was presented by El Gendy (2007) 

[17] and Russo (1998) [51] to reduce the size of the soil stiffness matrix for piled 

rafts. This technique was developed by the author (2016) [18] for analyzing 

vertically-loaded single barrettes. In this thesis, the CCT is extended to analyze 

laterally loaded single barrettes and barrette groups. Mindlin’s solution (1936) 

[40] is used to determine the soil deformation, considering the full three-

dimensional interactions between the barrette/barrette groups and surrounding 

soil. The soil stiffness matrix is determined considering the group interaction 
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between barrettes in the barrette groups. Subsequently, The CCT is used to 

reduce the soil stiffness to be one-dimensional. On the other hand, the barrette is 

divided into vertical elements to determine the barrette stiffness by one-

dimensional finite elements. The soil stiffness is added to the barrette stiffness 

generating the full stiffness matrix of barrette/barrette groups to be solved. As a 

result, this hybrid technique reduces the number of equations to be solved. Also, 

it enables applying the nonlinear response in of the barrettes by a hyperbolic 

function. Figure 1.1 shows the barrette construction sequence. 

 

Figure 1.1 Barrette construction sequence, [67]. 

1.2 Aims of the Study 

Analyzing laterally loaded barrettes is a complex problem. It is related to the 

difficulty of modeling the problem with the real conditions of loading and 

surrounding subsoil. Pile foundations are used as traditional deep foundation 

systems to overcome displacement problems. On the other hand, barrette 

foundations are not a preferred option based on cost considerations. In the present 

study, barrette foundations are studied as an alternative to overcome lateral 

displacement problems. The main aims of the study are:  

1- To develop a practical method for analyzing laterally loaded barrettes. 
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2- To examine the developed method for analyzing laterally loaded barrettes 

considering various soil conditions and parameters. 

3- To assess the appropriateness of laterally loaded barrettes choice as a 

foundation system for heavy-loaded structures. 

4- To provide the geotechnical engineer with guidelines and 

recommendations for the analysis of laterally loaded single barrettes 

constructed at the east Port-Said area.                       

1.3 Objectives of the Study 

To achieve the above aims. The following objectives have been set: 

1- Adopting a suitable numerical model for analyzing laterally loaded single 

barrettes and barrette groups considering barrette-soil interaction. 

2- Collecting the available subsoil information to get the soil parameters, 

which can be used in the proposed numerical model.  

3- Performing a sensitivity study to assess the importance of the main 

parameters: barrette width, barrette length, barrette height, the effective 

barrette height, and spacing between barrettes.                             

1.4 Significance of the Study 

Present a developed program for analyzing laterally loaded single 

barrettes/barrette groups with both linear and nonlinear subsoil models. Present 

guidelines to be a basis for designing laterally loaded barrette foundations in the 

east Port-Said area. These are similar to the soil formation of London, Frankfurt, 

Rome, Hong kong, and Dammam. 

1.5 Organization of Thesis 

The thesis consists of six chapters, as follows: 

Chapter (1): Introduction. 

This chapter introduces the research topic and illustrates the organization of this 

thesis. Also, presented aims, objectives, and significance of the study.  

Chapter (2): Literature Review. 

Reviews of the available literature related to the scope of the thesis are presented 

in this chapter. 

Chapter (3): Numerical Model. 

This chapter presents the developed mathematical models using flexibility 

coefficient and finite element methods based on CCT for analyzing laterally 

loaded single barrettes and barrette groups. 
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Chapter (4): Validation of the program. 

This chapter presents verification examples to test the accuracy of the program 

used in the analysis. Besides the linearly and nonlinearly results from analyzing 

laterally loaded barrettes embedded in multi-layered soil are compared with those 

in the available literature, the verification by comparing results from the present 

technique with two different 3D-FE models available in well-known software. 

Chapter (5): Analysis of Barrettes. 

This chapter presents a comparative study of laterally loaded single barrettes in 

a real-subsoil to study different methods for determining the effective barrette 

height, the linear and nonlinear soil models. Also, parametric studies are 

presented to investigate the behavior of laterally loaded barrette/barrette groups. 

Chapter (6): Conclusions and Recommendations. 

This chapter presents the summary and conclusions derived from the thesis, 

followed by recommendations for future work. Also, a list of research extracted 

from this thesis is presented.
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Introduction 

Modeling barrettes considering their geometry and surrounding soil is a 

complicated problem. Methods for analyzing piles are used to simplify this 

problem. In those methods, Barrettes are treated as piles with an equivalent cross-

sectional area. Most of these methods are verified with the results of the in-site 

pile-load test. For example, behaviors of laterally loaded piles were studied by 

comparing numerical results with those obtained from the full-scale in-site pile-

load test, Russo et al. (2008) [52]. A simplified numerical analysis of barrettes 

was carried out by Poulos et al. (2019) [48], considering the barrette as a pile 

with an equivalent cross-sectional area. The simplified solutions of an equivalent 

pile are compared to finite element results for the barrette/barrette group in their 

analysis. Kumari et al. (2020) [32] used the three-dimensional finite element (3D-

FE) for comparing the barrette load capacities with those of circular piles with 

the same cross-section area. 

Many researchers modeled barrettes using the 3D-FE and verified their analyses 

with the results of load tests. Zhang (2003) [63] and Mansour et al. (2021) [38] 

presented some of those analyses of laterally loaded barrettes tested in Hong 

Kong. Rafa et al. (2018) [50] followed their studies with vertically loaded single 

barrettes in Bangkok. Besides, Leszczynski (2009) [35] analyzed the barrette raft 

for a high-rise building in Warsaw. Znamenskii et al. (2019) [64] presented the 

analysis of the barrette raft of a 56-story residential building in Moscow. In their 

studies, using 3D-FE for modeling barrettes take into account the full interaction 

between barrettes, surrounding soil, and considering the geometry of barrettes. 

However, it leads to a large stiffness matrix. Consequently, the analysis takes a 

long computational time, even with today's fast computers. 

Limited methods for analyzing laterally and vertically loaded barrettes rather 

than 3D-FE methods are used. Some of these methods were developed by Basu 

(2006) [4],  Basu et al. (2008) [7] and Choi et al. (2014) [14] for analyzing 

laterally and vertically loaded piles and barrettes embedded in multi-layered soil. 

These methods are based on the differential equations governing displacements 

of the pile-soil system derived from energy principles. On the other hand, 

Kacprzak (2015) [29] proposed a method to determine the load settlement 

characteristic of a single barrette in the group of barrettes. 
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Barrette foundations are already used in many foundation systems, as in Dubai 

Creek Tower. It will be rising to a height of 1.3 kilometers into the sky. Upon 

completion in 2021, it will become the tallest tower in the world. The foundation 

of this tower consists of 145 barrettes.  These barrettes are 58 m in-depth with a 

cross-sectional of 2.8 m × 1.5 m, those are arranged into a dense grid of 5 m × 5 

m, as shown in Figure 2.1. Dubai Creek Tower’s pile cap is an approximately 20 

m thick multi-layered, tiered reinforced concrete top that covers and transfers the 

load to the foundation barrettes, as shown in Figure 2.2. Barrettes used for the 

foundation have been tested to a world record test load of 363 MN (36,300 tons), 

[44]. Other heavy-loaded structures constructed on barrette foundation such as 

the Grand Paris Express in France, The One tower in Brussels, the Eastern quay 

wall for east Port-Said port, and The Petronas Towers, Kuala Lumpur. 

 

Figure 2.1 Dubai Creek Tower’s barrettes, [65]. 
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Figure 2.2 Dubai Creek Tower’s pile cap, [66]. 

2.2 Axially Loaded Barrettes 

Thasnanipan et al. (1998) [60] reported the construction practice and the 

performance of a barrette constructed in a Bangkok metropolis, using trial 

trenching near a canal for trench assessment stability and soil deformation. Also 

discussed the choice of the barrette and common defects found in a barrette. 

Thasnanipan et al. (1999) [58] and Thasnanipan et al. (2001) [59] compared 

the result of load test on the barrette, and it is performance embedded in identical 

ground conditions with those from load test on bored pile having the same length.  

Lei (2001) [33] presented a new analytical elastic solution and developed 

calculation charts and tables for calculating the horizontal stress changes and 

displacements caused by the installation of a barrette. 

Charles and Lei (2003) [13] investigated long barrette behaviors under 

vertical loading to improve the design and analysis. 

Lei et al. (2007) [34] presented an approximate 3D semi-analytical method 

for analyzing single barrettes, barrette group, and barrette-cap system. 

Basu et al. (2008) [5] and Seo et al. (2009) [54] presented a user-friendly 

spreadsheet program (ALPAXL) for analyzing axially loaded barrettes 

embedded in layered soil. 
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Nossan et al. (2009) [43] used the 3D FE Method for analyzing barrette as 

deep foundations of two viaducts to sustain lateral earth pressures from a large 

sliding soil mass. 

Shulyatiev et al. (2013) [55] studied the soil parameters for analyzing 

barrette foundation based on the barrette static load-test results. 

Lin et al. (2014) [36] studied the axial performance of two heavily 

instrumented barrettes in Taipei, with and without grouting. The analysis was 

evaluated based on the results of barrette load tests. Also simulated the t-z curves 

interpreted from the measured data with depth by the hyperbolic model.  

Musarra et al. (2015) [41] evaluated results obtained from the barrette test 

for the new Petrobras headquarters building in Salvador, Bahia, northwest of 

Brazil, without discussing the designer assumption. 

Nguyen et al. (2016) [42] analyzed the result of bidirectional static loading 

tests on two shaft-grouted barrettes in Vietnam. The soil profile consisted of 

organic-soft clay on silty sand with some gravel and silty clay. 

Hsu et al. (2017) [26] carried out a comprehensive analysis for barrettes 

based on five load tests on barrettes in the Taipei Basin and Kaohsiung City. 

Based on the strains measured at several depths along the pile shaft, complete 

side resistance t-z curves for various soil strata are retrieved.  

Poulos et al. (2017) [46] presented the foundation system of Entisar Tower 

in Dubai. It will be one of the tallest buildings in the world, the foundation system 

consisting of barrettes with high-performance concrete, up to 80 m in depth, 

embedded in soft rock. 

Rabaiotti et al. (2018) [49] showed how barrette was adopted and tested for 

anchoring a high retaining wall in the rock on a slope located in the center of 

Zurich. 

Teparaksa et al. (2018) [57] carried out a load test on the fully instrumented 

barrettes. These tests are compared with the calculated ultimate capacity by the 

estimated adhesion factor of clay, friction/end bearing of sand. 

Manoj et al. (2020) [37] presented a case study of the design for the 100-

storey La Maison tower in Dubai. Barrette raft was selected as an efficient 

foundation system to transfer 55 MN load per barrette. Redesign by back-analysis 

of reinforced concrete barrette raft, resulting in a reduction of barrette length by 

about 11%. 

Mert et al. (2020) [39] presented a new hyperbolic method based on the load 

transfer method for settlement analysis of axially loaded single friction piles. This 

method is obtained by examining 14 pile load tests. Two of them were barrettes. 
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Tested barrettes were loaded until they failed. These barrettes were chosen from 

friction piles having variable dimensions and located in different regions. 

Cao et al. (2020) [12] presented an analysis method of dynamic response for 

a rectangular barrette subjected to a time-harmonic vertical force with the aid of 

a modified Vlasov foundation model in multilayered viscoelastic soil. 

2.3 Laterally Loaded Barrettes 

Abbas et al. (2008) [2] presented the results of the 3D-FE analysis of a lateral 

loaded single pile. Also investigated the effect of pile shape for both circular and 

square cross-sections on the pile response. Besides, studied the effectiveness of 

slenderness ratio L/B. Mohr-Coulomb model is used to simulate surrounding soil 

and linear elastic model for modeling piles. 

El Wakil et al. (2013) [23] presented the results of small-scale laterally 

loaded barrettes in the laboratory. It has been reported that the lateral response of 

the barrette is influenced by loading direction, and the lateral load capacity is the 

greatest when the loading is toward the largest side of the barrette. 

Conte et al. (2013) [16] proposed a 3D-FE approach for analyzing laterally 

loaded barrettes. This approach was used to analyze the results from some well-

documented loading tests concerning large-diameter piles and large-section 

rectangular piles (barrettes) embedded in sandy soils. 

Behloul et al. (2016) [8] studied the effect of different soil constitutive 

models on the laterally loaded barrette. 

Keawsawasvong et al. (2016) [30] presented a numerical solution for 

determining the ultimate lateral capacity of barrettes in clay. The 2D plane strain 

FE is employed to determine the limit load for this problem. 

Ukritchon et al. (2017) [61] investigated new upper and lower bound 

solutions for the undrained lateral capacity of barrettes under a general loading 

direction and full flow mechanism by using FE limit analysis with plane strain 

conditions. 

Nasser (2020) [28] used Plaxis 3D [45] to investigate the lateral performance 

of single and group of barrettes in cohesionless soils. 

2.4 Composed Coefficient Technique (CCT) 

El Gendy (2007) [17] used the CCT to reduce the size of the soil stiffness matrix 

of single piles, pile groups, and piled rafts. It was a modification of the technique 

proposed by Russo (1998) [51]. This technique is dependent on treating piles as 

a rigid member having a uniform settlement for all nodes along its shaft and base. 

The CCT enables the assembly of pile coefficients into composed coefficients. 

Also, applying the nonlinear response of piles by a hyperbolic relation between 
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loads and settlements. There is no approximation when generating the flexibility 

coefficients of the soil by the CCT. This technique is examined and used 

efficiently in many studies. Russo et al. (2012) [53] and El Gendy et al. (2018) 

[19] applied this technique efficiently to re-assessment foundation settlements for 

the Burj Khalifa, the tallest building all over the world.  

The CCT is developed by the author (2016) [18], [27], [20], [21], [22] for 

analyzing single barrettes, barrette groups and barrette raft under vertical load as 

a rigid and elastic body. In the developed technique, the barrette elasticity is 

considered by the finite element method, while that of the soil by the flexibility 

coefficient method. This technique is applied efficiently for vertically loaded 

barrettes. 

In this thesis, the numerical hybrid technique is extended for analyzing laterally 

loaded single barrettes/barrette groups. In which the full three-dimensional 

interactions between barrettes and the surrounding soil are taken into 

consideration. In addition, the CCT reduces the number of equations to be solved 

considerably. Also, it enables applying the nonlinear response in the lateral 

direction of the barrettes by a hyperbolic relation between the load and 

displacement of the barrette. 
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CHAPTER 3 

3 MATHEMATICAL MODEL 

3.1 Introduction 

A numerical technique for analyzing vertically loaded barrettes previously 

presented by the author (2016) [18] is extended to analyze laterally loaded single 

barrettes and barrette groups. The soil deformation is determined by the 

flexibility coefficient method based on Mindlin’s solution (1936) [40], 

considering the full interaction between barrettes and surrounding soil. The 

barrette surface is divided into elements considering the compatibility between 

soil and barrette displacements at the barrette-soil interface. Then, the soil 

stiffness matrix is determined considering the group interaction between barrettes 

in the barrette groups. Subsequently, the CCT is used for condensing the soil 

stiffness along the barrette surface to be one-dimension along the barrette vertical 

axis having variable displacements along the barrette height. On the other hand, 

the barrette in the vertical direction is discretized to one-dimensional finite 

elements. The barrette-applied load is transformed to the soil interface as contact 

forces. The soil stiffness is added to the barrette stiffness generating the full 

stiffness matrix of barrette groups to be solved. As a result, the hybrid technique 

reduces the number of equations to be solved. Consequently, the analysis requires 

less computing time. In addition, it enables the soil nonlinearity response to be 

applied by a hyperbolic relation between loads and displacements of the barrette. 

3.2 Modeling Laterally Loaded Single Barrette 

Following the CCT for modeling single barrette, barrette group, and barrette raft 

by the author (2016) [18], a composed coefficient Sxb [kN/m] representing the 

soil stiffness of the barrette is developed.  

The barrette is divided into many shaft and base elements with n nodes, as shown 

in Figure 3.1. Each one is acted upon by a distributed stress. The stresses acting 

on the shaft and base elements are replaced by a series of concentrated forces 

acting on the nodes to carry out the analysis. The soil displacement is determined 

by Mindlin’s flexibility coefficient [40], considering the compatibility between 

soil and barrette displacements at the barrette-soil interface. 
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Figure 3.1 Barrette geometry and elements. 

Where: 

L Length of the barrette in X-direction, [m]; 

W Width of the barrette in Y-direction, [m]; 

H Height of the barrette in Z-direction, [m]; 

l Length of the element in X-direction, [m]; 

w Width of the element in Y-direction, [m]; 

h Height of the element in Z-direction, [m]. 
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3.2.1 Soil flexibility matrix 

Mindlin (1936) [40] presented a mathematical solution for determining stresses 

and displacements in soil resulting from a point load acting beneath the ground 

surface. This solution often employed in the numerical analysis of piled 

foundations, Poulos and Davis (1968) [47]. Russo (2016) [52] used this solution 

to predict the pile-soil interaction based on a hybrid boundary element model 

(BEM) approach. The displacement factor Ixij of the point i due to a point load 

Qxj, kN, acting at point j beneath the surface (Figure 3.2) is expressed according 

to Mindlin’s solution as: 

 
Figure 3.2 The geometry of a point load beneath the ground surface. 
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Where:  

)(
22

1 c -z  + r = R , ) + ( +  = 
22

2 czrR  

c Depth of the point load j from the ground surface, [m]; 

z Depth of the studied point i from the ground surface, [m]; 

r Radial distance between points i and j, [m]; 

x Horizontal distance in plan between points i and j, [m]; 

νs Poisson’s ratio of the soil, [-]; and 

Gs Soil shear modulus, [kN/m2]. 

 
𝐺𝑠 =

𝐸𝑠
2(1 + 𝑣𝑠)

 

 

(2) 

Where, Es Modulus of elasticity of the soil, [kN/m2]. 

Now, the displacement in x-direction usij [m] at the point i due to a point load Qxj 

[kN] acting at point j beneath the surface (Figure 3.2) can be expressed as: 

 𝑢𝑠𝑖𝑗 = 𝐼𝑥𝑖,𝑗  𝑄𝑥𝑗  
 

(3) 

Where: 

usi Soil displacement in the x-direction of any shaft or base node i, [m]; 

Qxj Contact force in the x-direction on any shaft or base node j, [kN]; 

n Total number of nodes; and 

Ixi, j Flexibility coefficient of node i due to a concentrated force in the x-

direction on node j, [m/kN]. 

Or in matrix form: 

  𝑢𝑠 =  𝐼𝑥  𝑄𝑥  
 

(4) 

Where: 

{us} n Soil displacement vector of the single barrette in the x-direction; 

{Qx} n Contact force vector of the single barrette in the x-direction; and 

[Ix] n × n Soil flexibility matrix of the single barrette. 

Inverting the soil flexibility matrix in Eq. (4) leads to: 

  𝑄𝑥 =  𝑆𝑥  𝑢𝑠  
 

(5) 

Where [Sx] are n × n soil stiffness matrix of the single barrette, [Sx] = [Ix]-1. 
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3.2.2 Soil stiffness matrix 

To describe the formulation of composed coefficients for generating the soil 

stiffness matrix. Consider, as an example, the simple barrette shown in Figure 

3.3a, which has a total of n = 60 surface nodes in this case.  

 
Figure 3.3 The surface mesh of a single barrette. 

The barrette of 3D is converted into a 1D model as presented in Figure 3.3b, 

which has nb = 11 nodes in 11 levels only. Each node has a force and a 

displacement in the horizontal direction. This problem unknowns are reduced to 
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be 11 contact forces Qxbi and 11 horizontal displacements ubi on the soil-barrette 

interface. 

Displacements of the soil adjacent to all nodes of the single barrette shown in 

Figure 3.3a is rewritten in an expanded matrix as: 
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(6) 

The total soil flexibility matrix in Eq. (6) can be written in a matrix form as Eq. 

(4). Inverting the soil flexibility matrix in Eq. (6) leads to the total soil stiffness 

matrix in Eq. (7), which can be written in a matrix form as Eq. (5). 

 

 
 
 

 
 
𝑄𝑥1

…
𝑄𝑥25

…
𝑄𝑥60 

 
 

 
 

=

 
 
 
 
 
𝑆𝑥1,1 … 𝑆𝑥1,25 … 𝑆𝑥1,60

… … … … …
𝑆𝑥25,1 … 𝑆𝑥25,25 … 𝑆𝑥25,60

… … … … …
𝑆𝑥60,1 … 𝑆𝑥60,25 … 𝑆𝑥60,60 

 
 
 
 

 
 
 

 
 
𝑢𝑠1

…
𝑢𝑠25

…
𝑢𝑠60 

 
 

 
 

 

 

(7) 

Where Sxi, j is the soil stiffness coefficient of the single barrette, [kN/m]. 

The barrette is represented by a vertical member having a variable horizontal 

displacement along its height to reduce the number of unknown values in this 

problem. All nodes in the 3D model, which have the same level, are assumed to 

have the same displacement. For example, nodes 1 to 6 in Figure 3.3a will have 

the same displacement ub1. Another point of view in choosing this approach is 

that the designer is interested in the soil displacement and contact forces at 

different levels on the barrette height, not at each barrette node. This assumption 

can establish the relationship between displacement and the contact force on each 

node in 1D. In Eq. (7), the summation of rows and columns corresponds to the 

barrette node i in 1D, leads to: 

 
 
 
 
 

 
 
 
 
  𝑄𝑥𝑖

6

𝑖=1

 

1…

  𝑄𝑥𝑖

30

𝑖=25

 

5…

  𝑄𝑥𝑖

60

𝑖=55

 

11 
 
 
 
 

 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
  𝑆𝑥𝑖,𝑗

6

𝑗=1

6

𝑖=1

…  𝑆𝑥𝑖 ,𝑗

30

𝑗=25

6

𝑖=1

…  𝑆𝑥𝑖,𝑗

60

𝑗=55

6

𝑖=1
… … … … …

  𝑆𝑥𝑖,𝑗

6

𝑗=1

30

𝑖=25

…  𝑆𝑥𝑖,𝑗

30

𝑗=25

30

𝑖=25

…  𝑆𝑥𝑖 ,𝑗

60

𝑗=55

30

𝑖=25
… … … … …

  𝑆𝑥𝑖,𝑗

6

𝑗=1

60

𝑖=55

…  𝑆𝑥𝑖,𝑗

30

𝑗=25

60

𝑖=55

…  𝑆𝑥𝑖 ,𝑗

60

𝑗=55

60

𝑖=55  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
  𝑢𝑠𝑖

6

𝑖=1

 

1…

  𝑢𝑠𝑖

30

𝑖=25

 

5…

  𝑢𝑠𝑖

60

𝑖=55

 

11 
 
 
 
 

 
 
 
 

 

 
  (8) 
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Accordingly, Eq. (7) of the soil stiffness matrix can be rewritten for the barrette 

of 1D in composed coefficients as: 

 

 
 
 

 
 
𝑄𝑥𝑏2

…
𝑄𝑥𝑏5

…
𝑄𝑥𝑏11 

 
 

 
 

=

 
 
 
 
 
𝑆𝑥𝑏2,2 … 𝑆𝑥𝑏2,5 … 𝑆𝑥𝑏2,11

… … … … …
𝑆𝑥𝑏5,2 … 𝑆𝑥𝑏5,5 … 𝑆𝑥𝑏5,11

… … … … …
𝑆𝑥𝑏11,2 … 𝑆𝑥𝑏11,5 … 𝑆𝑥𝑏11,11 

 
 
 
 

 
 
 

 
 
𝑢𝑏2

…
𝑢𝑏5

…
𝑢𝑏11 

 
 

 
 

 

 

(9) 

Where: 

Sxbi, j  Composed coefficient of level i in 1D single barrette due to a 

concentrated force in the x-direction at level j, [kN/m]; 

ubi  Soil displacement of level i in 1D single barrette in the x-direction, [m], 

ub2 = us1= us2= ...= us6, ......, ub11 = us55 = ...= us60; and 

Qxbi  Contact force of level i in 1D single barrette in the x-direction, [kN], 

Qxb2= Qx1+ Qx2+ ... + Qx6,......, Qxb11= Qx55+ ... + Qx60. 

The first level of each barrette has no contact with the surrounding soil. So Qxb1 

= 0, Sxb 1,i = 0, and ub1 is the barrette-head displacement in the x-direction, where 

i is barrette level. Consequently, the composed soil stiffness matrix of the single 

barrette in Eq. (9) can be expressed in a matrix as: 

 

 
 
 

 
 

0
𝑄𝑥𝑏2

…
𝑄𝑥𝑏5

…
𝑄𝑥𝑏11 

 
 

 
 

=

 
 
 
 
 
 
0 0 0 0 0 0
0 𝑆𝑥𝑏2,2 … 𝑆𝑥𝑏2,5 … 𝑆𝑥𝑏2,11

0 … … … … …
0 𝑆𝑥𝑏5,2 … 𝑆𝑥𝑏5,5 … 𝑆𝑥𝑏5,11

0 … … … … …
0 𝑆𝑥𝑏11,2 … 𝑆𝑥𝑏11,5 … 𝑆𝑥𝑏11,11 

 
 
 
 
 

 
 
 

 
 
𝑢𝑏1

𝑢𝑏2

…
𝑢𝑏5

…
𝑢𝑏11 

 
 

 
 

 

 

(10) 

Eq. (10) shows that the soil stiffness matrix in Eq. (7) of size 60×60 is reduced 

considerably to an equivalent soil stiffness matrix of 11×11. The composed soil 

stiffness matrix in Eq. (10) is written in a matrix form as: 

  𝑄𝑥𝑏 =  𝑆𝑥𝑏  𝑢𝑏  
 

(11) 

Where: 

{ub}  nb Soil displacement vector of the single barrette levels in the x-direction;  

{Qx}  nb Contact force vector of the single barrette levels in the x-direction; and  

[Sxb]  nb × nb Composed soil stiffness matrix of the single barrette. 

  



Mathematical model 
 

18 

 

3.2.3 Barrette stiffness matrix  

In this analysis, the elasticity of the barrette is considered. The one-dimensional 

finite element method is used for analyzing the barrette body, which is exposed 

to external forces on the soil-barrette interface as soil reactions in addition to the 

applied load on its head as an action. The compatibility between horizontal 

displacements of the barrette and the soil displacements at the soil-barrette 

interface is taken in the horizontal direction.  

From the finite element, the beam stiffness matrix of the barrette element e is 

expressed as (Figure 3.4): 

 
Figure 3.4 The beam element with the applied load. 

 

 
 

 
𝑃𝑥𝑖
𝑀𝑦𝑖
𝑃𝑥𝑗
𝑀𝑦𝑗 

 

 

𝑒

=
𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
3

 
 
 
 
 

12 6ℎ𝑒 −12 6ℎ𝑒
6ℎ𝑒 4ℎ𝑒

2 −6ℎ𝑒 2ℎ𝑒
2

−12 −6ℎ𝑒 12 −6ℎ𝑒
6ℎ𝑒 2ℎ𝑒

2 −6ℎ𝑒 4ℎ𝑒
2  
 
 
 
 

 

𝑢𝑖
𝜃𝑦𝑖
𝑢𝑗
𝜃𝑦𝑗

 

𝑒

 

 

(12) 

Where:  

Ep  Modulus of elasticity of the barrette element e, [kN/m2]; 

Ipe Moment of inertia of the barrette element e, [m4];  

he Height of the barrette element e, [m];  

Pxi External force in the x-direction on node i, [kN];  

Myi External moment about the y-axis on node i, [kN.m];  

ui Displacement in the x-direction of node i, [m]; and  

θyi Rotation about the y-axis at node i, [º]. 

  

Pxi 

Myi 

e 

i 

P
xj
 

j 
M

yj
 

he 
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Eq. (12) could be written as: 

 

 
 

 
𝑃𝑥𝑖
𝑀𝑦𝑖
𝑃𝑥𝑗
𝑀𝑦𝑗 

 

 

𝑒

=

 
 
 
 
 
𝐵𝑢𝑖 ,𝑖 𝐵𝑢𝜃𝑖 ,𝑖 𝐵𝑢𝑖 ,𝑗 𝐵𝑢𝜃𝑖 ,𝑗
𝐵𝜃𝑢𝑖 ,𝑖 𝐵𝜃𝑖 ,𝑖 𝐵𝜃𝑢𝑖 ,𝑗 𝐵𝜃𝑖 ,𝑗
𝐵𝑢𝑗 ,𝑖 𝐵𝑢𝜃𝑗 ,𝑖 𝐵𝑢𝑗 ,𝑗 𝐵𝑢𝜃𝑗 ,𝑗

𝐵𝜃𝑢𝑗 ,𝑖 𝐵𝜃𝑗 ,𝑖 𝐵𝜃𝑢𝑗 ,𝑗 𝐵𝜃𝑗 ,𝑗  
 
 
 
 

 

𝑢𝑖
𝜃𝑦𝑖
𝑢𝑗
𝜃𝑦𝑗

 

𝑒

 

 

(13) 

Where:  

𝐵𝑢𝑖,𝑖 = 𝐵𝑢𝑗,𝑗 =
12𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
3 , 

  𝐵𝑢𝑖,𝑗 = 𝐵𝑢𝑗,𝑖 = −
12𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
3 , 

𝐵𝑢𝜃𝑖,𝑖 = 𝐵𝑢𝜃𝑖,𝑗 = 𝐵𝜃𝑢𝑖,𝑖 = 𝐵𝜃𝑢𝑗,𝑖 =
6𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
2 , 

𝐵𝜃𝑢𝑖,𝑗 = 𝐵𝑢𝜃𝑗,𝑖 = 𝐵𝑢𝜃𝑗,𝑗 = 𝐵𝜃𝑢𝑗,𝑗 = −
6𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
2 , 

𝐵𝜃𝑢𝑖,𝑖 = 𝐵𝑢𝜃𝑗,𝑗 =
4𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
, 

 𝐵𝜃𝑖,𝑗 = 𝐵𝜃𝑗,𝑖 =
2𝐸𝑝𝐼𝑝𝑒

ℎ𝑒
 . 
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Figure 3.5 The finite element mesh of the barrette and the element 

geometry. 

From Eq. (13), the assembled beam stiffness matrix for the single barrette shown 

in Figure 3.5 is: 

  𝑃𝑥 =  𝐵𝑥  𝛿𝑥  
 

(14) 

Where: 

{Px} 2×nb Vector of applied load on the single barrette levels, {Px1, Mx1, 0, 

0,…};  

x 

y 

z 
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b) Forces and displacement  
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{δx} 2×nb Deformation vector of the single barrette levels; {u1, θ1, u2, θ2,…}; 

and 

[Bx] (2×nb)×(2×nb) Beam stiffness matrix of the single barrette levels. 

Eq. (14) can be expressed in an expanded matrix as:  

 
 
 
 

 
 
 
𝑃𝑥𝑖
𝑀𝑦𝑖

0
0
0
0
…
…  

 
 
 

 
 
 

=

 
 
 
 
 
 
 
 
 
𝐵𝑢1,1 𝐵𝑢𝜃1,1 𝐵𝑢1,2 𝐵𝑢𝜃1,2 0 0 … …

𝐵𝜃𝑢1,1 𝐵𝜃1,1 𝐵𝜃𝑢1,2 𝐵𝜃1,2 0 0 … …

𝐵𝑢2,1 𝐵𝑢𝜃2,1 2𝐵𝑢2,2 2𝐵𝑢𝜃2,2 𝐵𝑢2,3 𝐵𝑢𝜃2,3 … …

𝐵𝜃𝑢2,1 𝐵𝜃2,1 2𝐵𝜃𝑢2,2 2𝐵𝜃2,2 𝐵𝜃𝑢2,3 𝐵𝜃2,3 … …

0 0 𝐵𝑢2,3 𝐵𝑢𝜃2,3 𝐵𝑢3,3 𝐵𝑢𝜃3,3 … …

0 0 𝐵𝜃𝑢2,3 𝐵𝜃2,3 𝐵𝜃𝑢3,3 𝐵𝜃3,3 … …
… … … … … … … …
… … … … … … … … 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
𝑢1

𝜃𝑦1

𝑢2

𝜃𝑦2

𝑢3

𝜃𝑦3

…
…  
 
 
 

 
 
 

 

 
 (15) 

To consider the compatibility between barrette and soil displacements at the 

soil-barrette interface, Eq. (14) is expressed as: 

  𝐵𝑥  𝛿𝑥 =  𝑃𝑥 −  𝑄𝑥𝑏  (16) 

Substituting Eq. (11) into Eq. (16) leads to: 

  𝐵𝑥  𝛿𝑥 =  𝑃𝑥 −  𝑆𝑥𝑏  𝑢𝑏  (17) 

The CCT is used to formulate the soil stiffness matrix for the barrette as a vertical 

member. This soil stiffness matrix takes into account the interaction effect among 

all the soil-barrette interface nodes. By assuming full compatibility between 

barrette and soil displacements ubi and ui, the following equation is obtained: 

 [ 𝐵𝑥 +  𝑆𝑥𝑏 ] 𝛿𝑥 =  𝑃𝑥  (18) 

The full soil stiffness matrix of the single barrette in Eq. (18) can be expressed in 

an expanded matrix, Eq. (19). 
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𝑃𝑥𝑖
𝑀𝑦𝑖

0
0
0
0
…
…  

 
 
 

 
 
 

= 

 
 
 
 
 
 
 
 
 
𝐵𝑢1,1 𝐵𝑢𝜃1,1 𝐵𝑢1,2 𝐵𝑢𝜃1,2 0 0 … …

𝐵𝜃𝑢1,1 𝐵𝜃1,1 𝐵𝜃𝑢1,2 𝐵𝜃1,2 0 0 … …

𝐵𝑢2,1 𝐵𝑢𝜃2,1 2𝐵𝑢2,2 + 𝑆𝑥𝑏2,2 2𝐵𝑢𝜃2,2 𝐵𝑢2,3 + 𝑆𝑥𝑏2,3 𝐵𝑢𝜃2,3 … …

𝐵𝜃𝑢2,1 𝐵𝜃2,1 2𝐵𝜃𝑢2,2 2𝐵𝜃2,2 𝐵𝜃𝑢2,3 𝐵𝜃2,3 … …

0 0 𝐵𝑢2,3 + 𝑆𝑥𝑏3,2 𝐵𝑢𝜃2,3 𝐵𝑢3,3 + 𝑆𝑥𝑏3,3 𝐵𝑢𝜃3,3 … …

0 0 𝐵𝜃𝑢2,3 𝐵𝜃2,3 𝐵𝜃𝑢3,3 𝐵𝜃3,3 … …
… … … … … … … …
… … … … … … … … 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
𝑢𝑏1

𝜃𝑦𝑏1

𝑢𝑏2

𝜃𝑦𝑏2

𝑢𝑏3

𝜃𝑦𝑏3

…
…  

 
 
 

 
 
 

 

 
 (19) 

Solving the system of linear equations of Eq. (19) gives displacements and 

rotations at each node. These are equal to the soil deformations at that node. 

Substituting soil displacement from Eq. (19) into Eq. (11) gives contact forces 

Qxbi on the barrette. 

3.2.4 Multi-layered soil  

Computing soil displacement usi,j using Mindlin solution is applied by 

characterizing soil layers around the barrette by the soil modulus of elasticity and 

Poisson's ratio of points j. Where usi,j is lateral soil displacement on any shaft or 

base node i due to a lateral point load at point j.  

In case the shaft element crosses two soil layers, the soil properties will take as a 

ratio of the element height that crosses these layers, as shown in Figure 3.6. 

 
𝐸𝑠 =

𝐸𝑠1ℎ1 + 𝐸𝑠2ℎ2
ℎ1 + ℎ2

 (20) 

 
𝑣𝑠 =

𝑣𝑠1ℎ1 + 𝑣𝑠2ℎ2
ℎ1 + ℎ2

 (21) 

Where:  

Es  Modulus of elasticity of the soil that used in Mindlin solution, [kN/m2]; 

νs Poisson’s ratio of the soil that used in Mindlin solution, [-]; 

Esi Soil modulus of elasticity of layer i, [kN/m2]; and 

νsi Poisson’s ratio of the soil of layer i, [-]. 
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Figure 3.6 The geometry of the shaft element lies between two layers. 

3.2.5  Nonlinear analysis of barrette  

Russo (1998) [51] presented a numerical method for analyzing piled raft. In this 

method, piles were modeled as interactive linear or nonlinear springs. This 

nonlinear method is extended by the author (2016) [18] for analyzing vertically 

loaded barrette. The nonlinear relation between loads and displacements of the 

barrette is determined by following this method. A hyperbolic function between 

the load on the barrette head and the settlement is considered.  

The nonlinear behavior of the barrette load-displacement in the horizontal 

direction is: 

 𝑃𝑥 =
𝑢𝑛

1
𝑆𝑥

+
𝑢𝑛
𝐻𝑙𝑖𝑚

 
(22) 

Where:  

un Nonlinear displacement in the x-direction of the barrette, [m]; and  

Hlim Horizontal limit load, [kN]. 

In Figure 3.7, the initial tangent modulus of the barrette is obtained from the 

linear analysis. This modulus is equal to the modulus of soil stiffness Sx. The 

horizontal limit load Hlim is a geometrical parameter of the hyperbolic relation.  

h1 

h2 j 

Layer (1) 

Es1, vs1 

Layer (2) 

Es2, vs2 

Layer (3) 

Es3, vs3 
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Figure 3.7 The barrette load-displacement curve (hyperbolic relation). 

3.3 Modeling Laterally Loaded Barrette Groups 

The developed hybrid technique is extended to analyze laterally loaded barrette 

groups. This technique takes into account the interactions of soil elements with 

the barrette elements. The soil stiffness matrix is determined considering the 

group interaction between barrettes in the barrette groups. As for the single 

barrette, the barrette itself is analyzed using FE. The nonlinear response is 

considered by a hyperbolic relation between the lateral load and displacement of 

the barrette. 

  

  

Nonlinear settlement  un [m]   
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3.3.1 Soil flexibility matrix 

To explain the proposed technique, consider the barrette group in Figure 3.8, 

which consists of nb = 3 barrettes. Barrettes are divided into shaft and base 

elements with a total number of nodes ng= 166. Each barrette i in the group 

system is subjected to a head force in x-directions Pxgi.  

 
Figure 3.8 The surface mesh of the barrette group. 

The total soil flexibility matrix of the barrette group can be expressed in an 

expanded matrix as: 

Barrette 1 

Barrette 2 

Barrette 3 

Pxg1 
P

xg2
 P

xg3
 

x 

y 

z 

1 2 3 4 
8 

9 12 
16 

24 

32 

40 

48 

56 

64 

57 

20 

28 

36 

44 

52 

60 

17 

25 

33 

41 

49 

65 66 67 
70 

71 73 
76 

77 79 

82 

83 85 
88 

89 91 
94 

95 97 

100 

101 103 
106 

112 
107 109 

113 115 
118 

119 121 

124 

125 127 
130 

131 133 
136 

137 139 
142 

143 145 
148 

149 151 
154 

155 157 
160 

161 163 
166 
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𝑢𝑠𝑔1

…
𝑢𝑠𝑔64

 

1

 

𝑢𝑠𝑔65

…
𝑢𝑠𝑔124

 

2

 

𝑢𝑠𝑔125

…
𝑢𝑠𝑔166

 

3 
 
 
 
 

 
 
 
 

= 

 
 
 
 
 
 
 
 
 
 
𝐼𝑥𝑔1,1 … 𝐼𝑥𝑔1,64 𝐼𝑥𝑔1,65 … 𝐼𝑥𝑔1,124 𝐼𝑥𝑔1,125 … 𝐼𝑥𝑔1,166

… … … … … … … … …
𝐼𝑥𝑔64,1 … 𝐼𝑥𝑔64,64 𝐼𝑥𝑔64,65 … 𝐼𝑥𝑔64,124 𝐼𝑥𝑔64,125 … 𝐼𝑥𝑔64,166

𝐼𝑥𝑔65,1 … 𝐼𝑥𝑔65,64 𝐼𝑥𝑔65,65 … 𝐼𝑥𝑔65,124 𝐼𝑥𝑔65,125 … 𝐼𝑥𝑔65,166

… … … … … … … … …
𝐼𝑥𝑔124,1 … 𝐼𝑥𝑔124,64 𝐼𝑥𝑔124,65 … 𝐼𝑥𝑔124,124 𝐼𝑥𝑔124,125 … 𝐼𝑥𝑔124,166

𝐼𝑥𝑔125,1 … 𝐼𝑥𝑔125,64 𝐼𝑥𝑔125,65 … 𝐼𝑥𝑔125,124 𝐼𝑥𝑔125,125 … 𝐼𝑥𝑔125,166

… … … … … … … … …
𝐼𝑥𝑔166,1 … 𝐼𝑥𝑔166,64 𝐼𝑥𝑔166,65 … 𝐼𝑥𝑔166,124 𝐼𝑥𝑔166,125 … 𝐼𝑥𝑔166,166 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

𝑄𝑥𝑔1

…
𝑄𝑥𝑔64

 

1

 

𝑄𝑥𝑔65

…
𝑄𝑥𝑔124

 

2

 

𝑄𝑥𝑔125

…
𝑄𝑥𝑔166

 

3 
 
 
 
 

 
 
 
 

 

 
 (23) 

Where: 

ng Total number of nodes in barrette group;  

usgi Soil displacement of the barrette group in the x-direction on any shaft or 

base node i, [m] ; 

Qxgj Contact force of the barrette group in the x-direction on any shaft or base 

node j, [kN]; and 

Ixgi, j Flexibility coefficient of the barrette group of node i due to a concentrated 

force in the x-direction on node j, [m/kN]. 

The total soil flexibility matrix of the barrette group in Eq. (23) can be written in 

a matrix form as: 

 {𝑢𝑠𝑔} = [𝐼𝑥𝑔]{𝑄𝑥𝑔} (24) 

Where: 

{usg} ng Soil displacement vector of the barrette group in the x-direction; 

{Qxg} ng Contact force vector of the barrette group in the x-direction; and  

[Ixg] ng × ng Soil flexibility matrix of the barrette group. 

Inverting the barrette group flexibility matrix in Eq. (24) leads to: 

 {𝑄𝑥𝑔} = [𝑆𝑥𝑔]{𝑢𝑠𝑔} (25) 

Where [Sxg] are ng×ng Soil stiffness matrix of the barrette group, [Sxg]=[Ixg]
-1. 
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3.3.2 Soil stiffness matrix 

Consider the simple barrette groups shown in Figure 3.8. All nodes in the 3D 

model, which have the same level for each barrette, are assumed to have the same 

displacement. For example, nodes 1 to 8 in barrette number 1 will have 

approximately the same displacement ubg2. This assumption reduces the size of 

the soil stiffness matrix. Also, it can establish the relationship between 

displacements and forces on each barrette level in 1D. It can be done by equating 

all displacements in each barrette levels in 3D by only an equivalent displacement, 

as shown in Figure 3.9.  

The barrette group of 3D is converted into a 1D model as presented in Figure 3.9, 

which has a total number of barrette levels nbg = 28 with nodes numbers 28 only. 

Each node has a force and a displacement in the horizontal direction. The 

unknowns of the problem will be reduced to nbg contact forces Qxbgi and 

displacements ubgi on the soil-barrette interface for all barrette nodes. 

The total soil stiffness matrix of the barrette group in Eq. (25) can be expressed 

in an expanded matrix as: 

 
 
 
 
 

 
 
 
 
 

𝑄𝑥𝑔1

…
𝑄𝑥𝑔64

 

1

 

𝑄𝑥𝑔65

…
𝑄𝑥𝑔124

 

2

 

𝑄𝑥𝑔125

…
𝑄𝑥𝑔166
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= 

 
 
 
 
 
 
 
 
 
 
𝑆𝑥𝑔1,1 … 𝑆𝑥𝑔1,64 𝑆𝑥𝑔1,65 … 𝑆𝑥𝑔1,124 𝑆𝑥𝑔1,125 … 𝑆𝑥𝑔1,166

… … … … … … … … …
𝑆𝑥𝑔64,1 … 𝑆𝑥𝑔64,64 𝑆𝑥𝑔64,65 … 𝑆𝑥𝑔64,124 𝑆𝑥𝑔64,125 … 𝑆𝑥𝑔64,166

𝑆𝑥𝑔65,1 … 𝑆𝑥𝑔65,64 𝑆𝑥𝑔65,65 … 𝑆𝑥𝑔65,124 𝑆𝑥𝑔65,125 … 𝑆𝑥𝑔65,166

… … … … … … … … …
𝑆𝑥𝑔124,1 …𝑆𝑥𝑔124,64 𝑆𝑥𝑔124,65 …𝑆𝑥𝑔124,124 𝑆𝑥𝑔124,125 …𝑆𝑥𝑔124,166

𝑆𝑥𝑔125,1 …𝑆𝑥𝑔125,64 𝑆𝑥𝑔125,65 …𝑆𝑥𝑔125,124 𝑆𝑥𝑔125,125 …𝑆𝑥𝑔125,166

… … … … … … … … …
𝑆𝑥𝑔166,1 …𝑆𝑥𝑔166,64 𝑆𝑥𝑔166,65 …𝑆𝑥𝑔166,124 𝑆𝑥𝑔166,125 …𝑆𝑥𝑔166,166 
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…
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𝑢𝑠𝑔65

…
𝑢𝑠𝑔124

 

2

 

𝑢𝑠𝑔125

…
𝑢𝑠𝑔166
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 (26) 
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Figure 3.9 The barrette group displacement in one-dimension. 

The summation of rows and columns corresponds to the barrette node i in 1D of 

the barrette group in Eq. (26), leads to: 
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𝑢𝑏𝑔11

…
𝑢𝑏𝑔20
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𝑢𝑏𝑔22

…
𝑢𝑏𝑔28
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 (27) 

Accordingly, Eq. (26) of the soil stiffness matrix for the barrette of 1D can be 

rewritten in composed coefficients as: 
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𝑄𝑥𝑏𝑔2

…
𝑄𝑥𝑏𝑔9

 

1

 

𝑄𝑥𝑏𝑔11

…
𝑄𝑥𝑏𝑔20

 

2

 

𝑄𝑥𝑏𝑔22

…
𝑄𝑥𝑏𝑔28

 

3 
 
 
 
 

 
 
 
 

= 

 
 
 
 
 
 
 
 
 
 
𝑆𝑥𝑏𝑔2,2 … 𝑆𝑥𝑏𝑔2,9 𝑆𝑥𝑏𝑔2,11 … 𝑆𝑥𝑏𝑔2,20 𝑆𝑥𝑏𝑔2,22 … 𝑆𝑥𝑏𝑔2,28

… … … … … … … … …
𝑆𝑥𝑏𝑔9,2 … 𝑆𝑥𝑏𝑔9,9 𝑆𝑥𝑏𝑔9,11 … 𝑆𝑥𝑏𝑔9,20 𝑆𝑥𝑏𝑔9,22 … 𝑆𝑥𝑏𝑔9,28

𝑆𝑥𝑏𝑔11,2 … 𝑆𝑥𝑏𝑔11,9 𝑆𝑥𝑏𝑔11,11 … 𝑆𝑥𝑏𝑔11,20 𝑆𝑥𝑏𝑔11,22 … 𝑆𝑥𝑏𝑔11,28

… … … … … … … … …
𝑆𝑥𝑏𝑔20,2 … 𝑆𝑥𝑏𝑔20,9 𝑆𝑥𝑏𝑔20,11 … 𝑆𝑥𝑏𝑔20,20 𝑆𝑥𝑏𝑔20,22 … 𝑆𝑥𝑏𝑔20,28

𝑆𝑥𝑏𝑔22,2 … 𝑆𝑥𝑏𝑔22,9 𝑆𝑥𝑏𝑔22,11 … 𝑆𝑥𝑏𝑔22,20 𝑆𝑥𝑏𝑔22,22 … 𝑆𝑥𝑏𝑔22,28

… … … … … … … … …
𝑆𝑥𝑏𝑔28,2 … 𝑆𝑥𝑏𝑔28,9 𝑆𝑥𝑏𝑔28,11 … 𝑆𝑥𝑏𝑔28,20 𝑆𝑥𝑏𝑔28,22 … 𝑆𝑥𝑏𝑔28,28 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
  

𝑢𝑏𝑔2

…
𝑢𝑏𝑔9

 

1

 

𝑢𝑏𝑔11

…
𝑢𝑏𝑔20

 

2

 

𝑢𝑏𝑔22

…
𝑢𝑏𝑔28
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 (28) 

Where:  

ubgi Soil displacement of the barrette group levels in the x-direction in node i 

of 1D barrette group, [m]; ubg2 = usg1= usg2= ...= usg8, ......, ubg20 = usg119 

= ...= usg124, ......, ubg28 = usg161 = ...= usg166;  

Qxbgi  Contact force of the barrette group levels in the x-direction on node i of 

1D barrette group, [kN]; Qxbg2= Qxg1+ Qxg2+ ... + Qxg8, ......, Qxbg9= 

Qxg57 + ... + Qxg64, ......, Qxgb28= Qxg161+ ... + Qxg166; and  

Sxbg i,j  Composed coefficient of the barrette group of level i due to a 

concentrated force in the x-direction at level j, [kN/m].  

The first level of each barrette has no contact with the surrounding soil. So Qxbg1 

= Qxbg10 = Qxbg21 = 0, Sxbg 1,i = Sxbg 10,i = Sxbg 21,i = 0, and ubg1, ubg10, ubg21 are 

barrette head displacemets in the x-direction, where i is barrette level. Eq. (28) 

can be written as: 
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0
𝑄𝑥𝑏𝑔2

…
𝑄𝑥𝑏𝑔9

 

1

 

0
𝑄𝑥𝑏𝑔11

…
𝑄𝑥𝑏𝑔20

 

2

 

0
𝑄𝑥𝑏𝑔22

…
𝑄𝑥𝑏𝑔28

 

3 
 
 
 
 
 
 

 
 
 
 
 
 

= 

 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 𝑆𝑥𝑏𝑔2,2 … 𝑆𝑥𝑏𝑔2,9 𝑆𝑥𝑏𝑔2,11 … 𝑆𝑥𝑏𝑔2,20 𝑆𝑥𝑏𝑔2,22 … 𝑆𝑥𝑏𝑔2,28

0 … … … … … … … … …
0 𝑆𝑥𝑏𝑔9,2 … 𝑆𝑥𝑏𝑔9,9 𝑆𝑥𝑏𝑔9,11 … 𝑆𝑥𝑏𝑔9,20 𝑆𝑥𝑏𝑔9,22 … 𝑆𝑥𝑏𝑔9,28

0 𝑆𝑥𝑏𝑔11,2 … 𝑆𝑥𝑏𝑔11,9 𝑆𝑥𝑏𝑔11,11 … 𝑆𝑥𝑏𝑔11,20 𝑆𝑥𝑏𝑔11,22 … 𝑆𝑥𝑏𝑔11,28

0 … … … … … … … … …
0 𝑆𝑥𝑏𝑔20,2 … 𝑆𝑥𝑏𝑔20,9 𝑆𝑥𝑏𝑔20,11 … 𝑆𝑥𝑏𝑔20,20 𝑆𝑥𝑏𝑔20,22 … 𝑆𝑥𝑏𝑔20,28

0 𝑆𝑥𝑏𝑔22,2 … 𝑆𝑥𝑏𝑔22,9 𝑆𝑥𝑏𝑔22,11 … 𝑆𝑥𝑏𝑔22,20 𝑆𝑥𝑏𝑔22,22 … 𝑆𝑥𝑏𝑔22,28

0 … … … … … … … … …
0 𝑆𝑥𝑏𝑔28,2 … 𝑆𝑥𝑏𝑔28,9 𝑆𝑥𝑏𝑔28,11 … 𝑆𝑥𝑏𝑔28,20 𝑆𝑥𝑏𝑔28,22 … 𝑆𝑥𝑏𝑔28,28 
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1
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𝑢𝑏𝑔11

…
𝑢𝑏𝑔20

 

2

 

𝑢𝑏𝑔21

𝑢𝑏𝑔22

…
𝑢𝑏𝑔28

 

3 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
 (29) 

The composed soil stiffness matrix in Eq. (29) is written in a matrix form as: 

 {𝑄𝑥𝑏𝑔} = [𝑆𝑥𝑏𝑔]{𝑢𝑏𝑔} (30) 

Where: 

{ubg}  nbg Soil displacement vector of the barrette group levels in the x-direction;  

{Qxbg} nbg Contact force vector of the barrette group levels in the x-direction;  

and  

[Sxbg]  nbg × nbg Composed soil stiffness matrix of the barrette group. 

Eq. (29) shows that the soil stiffness matrix in Eq. (26) of size 166 × 166 is 

reduced considerably to an equivalent soil stiffness matrix of 28 × 28.  
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3.3.3 Barrette stiffness matrix  

The one-dimensional finite element method is used for analyzing barrettes, as 

shown in Figure 3.10. The composed coefficient technique is used to formulate 

the soil stiffness matrix of barrettes as vertical members, Eq. (30). 

 
Figure 3.10 Finite element mesh of the barrette group and element 

geometry. 

The barrette stiffness matrix of the barrette group is formulated according to Eq. 

(12) to be: 
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𝐵𝑢𝑖 ,𝑖 𝐵𝑢𝜃𝑖 ,𝑖 𝐵𝑢𝑖 ,𝑗 𝐵𝑢𝜃𝑖 ,𝑗
𝐵𝜃𝑢𝑖 ,𝑖 𝐵𝜃𝑖 ,𝑖 𝐵𝜃𝑢𝑖 ,𝑗 𝐵𝜃𝑖 ,𝑗
𝐵𝑢𝑗 ,𝑖 𝐵𝑢𝜃𝑗 ,𝑖 𝐵𝑢𝑗 ,𝑗 𝐵𝑢𝜃𝑗 ,𝑗

𝐵𝜃𝑢𝑗 ,𝑖 𝐵𝜃𝑗 ,𝑖 𝐵𝜃𝑢𝑗 ,𝑗 𝐵𝜃𝑗 ,𝑗  
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𝑢𝑔𝑗
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𝑒

 

 

(31) 

Where:  

Pxgi Barrette group external force in the x-direction at level i, [kN];  

Mygi Barrette group external moment about the y-axis at level i, [kN.m];  

ugi Barrette group displacement in the x-direction of level i, [m]; and  
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θygi Barrette group rotation about the y-axis at level i, [º]. 

 {𝑃𝑥𝑔} = [𝐵𝑥𝑔]{𝛿𝑥𝑔} (32) 

 

Where: 

{Pxg} 2×nb Vector of applied load on the barree group levels, {Pxg1, Mxg1, 0, 

0,…};  

{δxg} 2×nb Deformation vector of the barrette group levels; {ug1, θg1, ug2, 

θg2, …}; and 

[Bxg] (2×nb)×(2×nb) Beam stiffness matrix of the barrette group levels. 

From the finite element method, assuming full compatibility between barrette 

and soil displacements at the soil-barrette interface, Eq. (32) can be expressed as: 

 [𝐵𝑥𝑔]{𝛿𝑥𝑔} = {𝑃𝑥𝑔} −  𝑄𝑥𝑏  (33) 

 

Substituting Eq. (30) into Eq. (33) leads to: 

 [𝐵𝑥𝑔]{𝛿𝑥𝑔} = {𝑃𝑥𝑔} − [𝑆𝑥𝑏𝑔]{𝑢𝑏𝑔} (34) 

This soil stiffness matrix takes into account the interaction effect among all the 

soil-barrette interface nodes. Also, it considered the group effect of the single 

barrette in the group of barrettes. By assuming full compatibility between 

barrettes and soil displacements ubgi and ugi, the following equation is obtained: 

 [[𝐵𝑥𝑔] + [𝑆𝑥𝑏𝑔]] {𝛿𝑥𝑔} = {𝑃𝑥𝑔} (35) 

Solving the system of the linear equation (35) gives displacements and rotations 

of each node. These deformations are equal to those of the soil at that node. 

Substituting soil displacement from Eq. (35) into Eq. (30) gives contact forces 

Qxbgi on barrettes. 
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CHAPTER 4 

4 Validation of the program 

4.1 Introduction 

The developed program is used for analyzing laterally loaded single 

barrettes/barrette groups embedded in multi-layered soil, linear and nonlinear 

models. Firstly, barrette displacements and bending moments with barrette 

heights obtained by the present hybrid-technique are compared with those from 

an analytical analysis in the available literature to verify the program. Another 

comparison between dimensionless barrette-head displacements obtained by this 

hybrid analysis and the analytical solution is also presented. The nonlinear 

analysis of a laterally loaded single barrette is verified by comparing results from 

this model with those using an equivalent circular shafted pile to represent the 

barrette. Also, case studies are performed using the developed technique to 

compare the results with those from load tests of the laterally loaded single 

barrette and 3D-FE model. In addition, two different models using 3D-FE are 

used to compare the results from these models with those from using the 

presented program. These models are available in the well-known program Plaxis 

[45]. In this comparison, the results of barrette displacements, shear forces, and 

bending moments along the barrette height obtained from the different models 

are compared. 

4.2 The Validity of Linear Analysis 

4.2.1 Description of the test problem 

The barrette displacements with barrette heights obtained by the present analysis 

using flexibility coefficient and CCT are compared with those obtained by Basu 

et al. (2007, 2008) [6], [7] and Choi et al. (2014, 2015) [14], [15], to verify the 

present analysis of a laterally loaded single barrette in multi-layered soil.  

An analytical analysis of a laterally loaded single barrette embedded in a multi-

layered soil medium is available in the references Basu et al. (2007, 2008) [6], 

[7] and Choi et al. (2014, 2015) [14], [15] and compared with those by equivalent 

3D-FE using ABAQUS [1]. In this analysis, the differential equations governing 

the barrette-soil system displacements were obtained using the principle of 

minimum potential energy and calculus of variations. Closed-form solutions 

were produced for barrette displacements and forces along the barrette shaft by 

using the initial parameters method for a circular pile analysis with an equivalent 

diameter with the same second moment of inertia as that of the barrette. 
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Figure 4.1 The subsoil of single barrettes. 

The single barrette shown in Figure 4.1 is analyzed for seven different cases with 

different geometries, lateral loads, and subsoil conditions. Barrettes geometry, 

lateral loads on the barrettes head, and modulus of elasticity of barrettes Ep for 

the chosen cases are listed in Table 4.1. The subsoil of each case consists of 

different layers. Each layer has a different modulus of elasticity Es, and Poisson's 

ratio νs are listed in Table 4.2 and shown in Figure 4.2.  

  

Ep [kN/ m2] H
 [

m
] 

L [m] 
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Table 4.1 Barrette geometries, Basu et al. (2007, 2008) [6], [7] and Choi et al. 

(2014, 2015) [14], [15]. 

Case 
Cross-section 

[m2] 
Height [m] 

Modulus of elasticity of 

the barrette [kN/m2] 

Load 

[kN] 

1 0.5 × 0.5  10 24×106 300 

2 0.7 × 0.4 15 24×106 300 

3 2.8 × 0.8 40 25×106 3000 

4 0.7 × 0.4 10 25×106 300 

5 0.53 × 0.53 10 25×106 300 

6 0.7 × 0.4 15 24×106 300 

7 0.5 × 0.5 15 25×106 500 

Table 4.2 Soil properties, Basu et al. (2007, 2008) [6], [7] and Choi et al. (2014, 

2015) [14], [15]. 

Case 

Layer 

No. 

 

I 

Soil type 

Layer depth 

from the 

ground 

surface 

z [m] 

Modulus of 

elasticity 

Es [MN/m2] 

Poisson’s 

ratio 

νs [-] 

1, 2, 

4, 5 

1 Very stiff clay 2 20 0.35 

2 
Medium dense 

sand 
5 35 0.25 

3 Dense sand 8 50 0.20 

4 Dense sand ∞ 80 0.15 

3 

1 Very stiff clay 1.5 20 0.35 

2 Loose sand 3.5 25 0.30 

3 
Medium dense 

sand 
8.5 40 0.25 

4 Dense sand ∞ 80 0.20 

6 1 Dense sand ∞ 50 0.20 

7 1 
Medium dense 

sand 
∞ 40 0.25 
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Figure 4.2 Boring logs. 
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4.2.2 Numerical analysis 

A comparison of results of the laterally loaded single barrette in a multi-layered 

soil medium of the present analysis with those by Basu et al. (2007, 2008) [6], 

[7] and Choi et al. (2014, 2015) [14], [15] is presented here. Both the barrette 

lengths and widths are taken as two elements. Barrettes heights are divided into 

vertical elements with h = 0.5 [m], in all cases, as shown in Figure 4.3. Except 

for case (3), the barrette length and width are taken as four elements. The Barrette 

height is divided into vertical elements with h = 2 [m], as shown in Figure 4.4. In 

the analysis, the barrette material is considered to be elastic. The barrette is 

analyzed as a 1D finite element, as shown in Figure 4.5. 

 
Figure 4.3 The surface element of the barrette for all cases except case (3). 
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Figure 4.4 The surface element of the barrette for case (3). 

 
Figure 4.5 Barrette in 1D finite elements. 
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4.2.3 Results and discussion 

The barrette displacement u and bending moment along the barrette height 

obtained from the present analysis using flexibility coefficient and CCT for the 

seven cases are compared with those by Basu et al. (2007, 2008) [6], [7] and Choi 

et al. (2014, 2015) [14], [15], as shown in Figure 4.6 to Figure 4.16 and listed in 

Table 4.3.  

Results show that the absolute difference between the barrette head 

displacements in the present analysis and that by Basu et al. (2007, 2008) [6], [7] 

and Choi et al. (2014, 2015) [14], [15] is less than 0.05 [cm] for all cases except 

case (3) which is 0.11 [cm]. This difference when using FEA is less than 0.08 

[cm] for cases (1, 2, 6) and 0.2 cm for the third one, as shown in Figure 4.6.  

Also, the absolute difference between the computed barrette base displacements 

in the present analysis and those by Basu et al. (2007, 2008) [6], [7] and Choi et 

al. (2014, 2015) [14], [15] is less than 0.04 [cm] for all cases except case (3) 

which is 0.06 [cm]. This difference when using FEA is less than 0.03 [cm] for 

cases (1, 2, 6) and 0.07 [cm] for the third one, as shown in Figure 4.7.  

Comparing the maximum bending moment using the present analysis and those 

from Basu et al. (2007, 2008) [6], [7] and Choi et al. (2014, 2015) [14], [15], the 

differences is less than 11 %, as listed in Table 4.3.  

In general, it can be concluded that the results of the present analyses using 

flexibility coefficient and CCT are in good agreement with both analytical results 

and numerical results using full 3D FEA.  

Table 4.3 Comparison between Max. Bending moment obtained from Basu et al. 

(2007, 2008) [6], [7] and Choi et al. (2014, 2015) [14], [15] with those 

obtained from the present analysis using flexibility coefficient. 

Case 

Max. Bending moment [kN.m] 

Difference 

[%] 
Basu et al. (2007, 2008) 

and Choi et al. (2014, 

2015) 

Present analysis 

Case (3) 7681.2 7258.1 -5.51% 

Case (4) 224.4 201 -10.43% 

Case (5) 184.2 164.3 -10.80% 

Case (7) 202.6 204.5 0.94% 

 



Chapter 4 
 

 41 

 

 
Figure 4.6 Comparison between Max. Displacements. 

 
Figure 4.7 Comparison between Min. Displacements. 
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Figure 4.8 Displacement u with the barrette height (case 1). 

 

 
Figure 4.9 Displacement u with the barrette height (case 2). 
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Figure 4.10 Displacement u with the barrette height (case 3). 

 

 
Figure 4.11 Bending moment with the barrette height (case 3). 
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Figure 4.12 Displacement u with the barrette height (case 4). 

 
Figure 4.13 Bending moment with the barrette height (case 4). 
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Figure 4.14 Displacement u with the barrette height (case 5). 

 

 
Figure 4.15 Bending moment with the barrette height (case 5). 
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Figure 4.16 Displacement u with the barrette height (case 6). 
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Figure 4.17 The ratio u2-layer/uhomog. in two-layer soil and versus hs/H. 
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Figure 4.18 The normalized un in two-layer soil and versus ratio Ep/Gs

*
avg.. 

Three different cases of three-layer soil medium are considered for analyzing 

laterally loaded square barrette, as shown in Figure 4.19 and Figure 4.20. For the 

first case (Case I), the modified soil shear modulus increases with depth, whereas 

for the third case (Case III), it decreases with depth. For the second case (Case 

II). The intermediate layer has the smallest modified soil shear modulus. In 

addition, the top two layers thickness hs is considered to be hs1 = hs2 = 0.1 H (Soil 

profile (A)) and hs1 = hs2 = H/3 (Soil profile (B)). The normalized barrette-head 

displacement un is plotted against the barrette-soil modulus ratio Ep/Gs
*
avg. for 

Cases I-III with H/B* = 50, L/W = 1, and vs = 0.3, as shown in Figure 4.19. Figure 

4.20 shows the normalized barrette-head displacement un against the barrette 

slenderness ratio H/B* for Cases I-III with Ep/Gs
*
avg.= 1000, L/W = 1, and vs = 0.3. 
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Figure 4.19 The normalized un in three-layer soil and versus ratio Ep/Gs

*
avg.. 

 
Figure 4.20 The normalized un against the ratio H/B*. 
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4.3.3 Results and discussion 

It can be noticed from Figure 4.17 to Figure 4.20 that a good agreement between 

the results of the present analysis and those of Choi et al. (2014) [14] in all cases. 

The thickness of the top layer of the soil is the controlling factor for barrette-head 

displacement. The horizontal displacement of the barrette is not influenced by 

the properties of the underlying layers in the case where the topsoil layer 

thickness exceeds approximately 30% of the barrette height. In the case of a soft 

layer over a stiff layer (e.g., Gs1
*/Gs2

*= 0.2 or 0.5), u2-layer/uhomog. increases with 

an increase in hs/H. The dimensionless barrette-head displacement decreases as 

Ep/Gs
*
avg. increases. For long barrettes with barrettes width ratio H/W more than 

30 has a very small effect because the barrettes height is reached to the effective-

height. 

4.4 The Validity of Nonlinear Analysis 

4.4.1 Description of the test problem 

The barrette results obtained by the present nonlinear-analysis are compared with 

those obtained by Poulos et al. (2019) [48] using 3D FE and using an equivalent 

circular shafted pile to represent the barrette to verify the present nonlinear 

analysis of a laterally loaded single barrette. 

The single barrette shown in Figure 4.21 is analyzed nonlinearly with different 

lateral loads values in both the x and the y-directions. Barrette geometry and 

modulus of elasticity of barrette Ep for the chosen case are listed in Table 4.4. 

The subsoil of this case consists of two different layers. Each layer has a different 

modulus of elasticity Es, and Poisson's ratio νs are listed in Table 4.5.  
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Figure 4.21 Single barrette with subsoil. 

Table 4.4 Barrette geometries, Poulos et al. (2019) [48]. 

Case 
Cross-section 

[m2] 

Height 

[m]  

Modulus of elasticity of the barrette 

[kN/m2] 

1 1.20 × 2.8 20 m 30 ×106  

Table 4.5 Subsoil properties, Poulos et al. (2019) [48]. 

Layer 

No. 

I 

Soil type 

Layer depth 

from the ground 

surface 

z [m] 

Modulus of 

elasticity Es 

[MN/m2] 

Poisson’s 

ratio νs  

[-] 

1 Clay 30 50 0.49 

2 Soft rock 100 500 0.3 

H
 =

 2
0

 [
m

] 

2.8 × 1.2 [m2] 

Layer (1): Clay 

Es1 = 50 [MN/m2], vs1 = 0.49 [-] 

Z
1
 =

 3
0
 [

m
] 

Layer (2): Soft rock 

E
s2

 = 500 [MN/m2], v
s2

 = 0.30 [-] 

Ep = 30×106 kN/m2 

Z
2
 =

 1
0
0

 [
m

] 
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4.4.2 Numerical analysis 

A comparison between results obtained from the present analysis and those by 

Poulos et al. (2019) [48] is presented herein. The height of the barrette is divided 

into equal-elements. Each element has a height of h = 1.0 [m]. Both the barrette 

length and width are taken as two elements, as shown in Figure 4.22. In the 

analysis, the barrette is analyzed nonlinearly, using a hyperbolic function, to 

represent the real load-displacement relation. A horizontal limit load Hlim [kN] 

has been used for the nonlinear load-displacement curve. It is usually taken as a 

ratio of the ultimate load as Poulos et al. (2019) [48]. Eq. (36) is used to 

determine the ultimate lateral load of piles in clay, according to the ECP 202 [56]. 

 𝐻𝑢𝑙𝑡 = 9 𝑐𝑢  𝑧 − 1.5 𝐷  𝐷 (36) 

Where: 

D The diameter of the pile with the same moment of inertia, [m]; 

z Depth from the ground surface, [m]; 

cu Undrained cohesion of clay, [kN/m2]; and 

Hult Ultimate lateral load, [kN]. 

To use this equation D is taken as the diameter of the pile with the same moment 

of inertia, which will be 2.59 [m] for loads in the x-direction and 1.69 [m] for 

loads in the y-direction. So, Hult will be 18782 [kN] for loads in the x-direction 

and 13282 [m] for loads in the y-direction where cu is 50 [kN/m2]. Limit lateral 

loads were Hlim = 0.772 Hult = 14.5 [MN] for loads in the x-direction and Hlim = 

0.753 Hult = 10 [MN] for loads in the y-direction. 
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Figure 4.22 The surface element of the barrette. 

4.4.3 Results and discussion 

The lateral load-displacement curves of the barrette 20 m height in both the x and 

the y-directions obtained from the present analysis are compared in Figure 4.23 

and Figure 4.24 with those obtained by Poulos et al. (2019) [48]. The results are 

in a good agreement. 

The load-displacement curve depends on the direction of loading. As reported 

before by Zhang (2003) [63], El Wakil et al. (2013) [23], and Poulos et al. (2019) 

[48], when the loading is toward the largest side of the barrette, it is predicted to 

carry more load and has a stiffer response than when loaded along the minor axis 

due to the high resistance of the barrette loaded along the minor axis. 
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Figure 4.23 Load-displacement curve (x-direction). 

 

 
Figure 4.24 Load-displacement curve (y-direction). 
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4.5 Case Study of Lateral Load Tests 

4.5.1 Description of the test problem 

Lateral load-displacement relation of the barrette obtained by the present analysis 

is compared with that presented by Zhang (2003) [63], which is obtained from 

both barrette load test and 3D FE analysis. 

Results of load tests of single barrettes having a rectangular cross-section 

embedded in a multi-layered soil medium are available in the reference Zhang 

(2003) [63]. These tests were performed in Hong Kong. 

The barrette in Figure 4.25 is considered and analyzed for different cases. The 

barrette geometry and modulus of elasticity Ep for these cases are listed in Table 

4.6. The soil properties, modulus of elasticity Es, and Poisson's ratio νs are listed 

in Table 4.7 and Table 4.8 and shown in Figure 4.26. Es was estimated from SPT 

according to Bowles (1996) [9]. 

 
Figure 4.25 Single barrette with subsoil. 
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Figure 4.26 Boring logs. 
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Table 4.6 Barrette geometries, Zhang (2003) [63]. 

Case 
Cross-section 

[m2] 

Height 

[m] 

Modulus of elasticity of the barrette 

[kN/m2] 

1 0.86 × 2.8 51 30.3×106 

2 1.20 × 2.7 30 35×106 

Table 4.7 The subsoil properties of case (1), Zhang (2003) [63]. 

Layer 

No. 

 

I 

Soil type Layer depth 

from the ground 

surface 

z [m] 

Modulus of 

elasticity Es 

[MN/m2] 

Poisson’s 

ratio νs  

[-] 

1 Fill (Clayey silty 

sand with gravel and 

occasional 

cobble/boulder) 

1.5 13.6 0.3 

2 8 27.2 0.3 

3 11 10 0.3 

4 Fill (Cobbles) 15 17.6 0.3 

5 

Alluvium (Clayey 

silty sand with 

gravel) 

23 11 0.3 

6 

Completely 

decomposed granite 

(Silty sand with 

gravel) 

29.5 22 0.3 

7 32.5 36.6 0.3 

8 34 47.6 0.3 

9 40 63.9 0.3 

10 100 83.6 0.3 
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Table 4.8 Subsoil properties of case (2), Zhang (2003) [63]. 

Layer 

No. 

 

I 

Soil type 

Layer depth 

from the ground 

surface 

z [m] 

Modulus of 

elasticity Es 

[kN/m2] 

Poisson’s 

ratio νs 

[-] 

1 

Fill (Clayey silty 

sand with gravel and 

occasional 

cobble/boulder) 

15 33.2 0.3 

2 
Marine deposit 

(Clayey silty sand) 
19.5 24 0.3 

3 

Alluvium (Clayey 

silty sand with 

gravel) 

28 40.75 0.3 

4 Completely 

decomposed granite 

(Silty sand with 

gravel) 

29.5 69 0.3 

5 34 52 0.3 

6 100 74 0.3 

4.5.2 Numerical analysis 

The height of the barrette is divided into equal-elements. Each element has a 

height of h = 2.0 [m] for case (1) and 1.0 [m] for case (2). Both the barrette length 

and width are taken as two elements, as shown in Figure 4.27. The barrettes are 

analyzed nonlinearly using a hyperbolic function. Horizontal limit loads have 

been assumed from the load-displacement curves of Zhang (2003) [63]. These 

were 6 [MN] and 5.45 [MN] for the first case and 3 [MN] for the second case. 
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Figure 4.27 The surface element of the barrette. 

4.5.3 Results and discussion 

The horizontal load-displacement relations of barrettes obtained from the present 

analysis are compared in Figure 4.28 to Figure 4.30  with that obtained from load 

tests and from using 3D FE carried out by Zhang (2003) [63]. 

From the comparison of the linear analysis, it was found that the absolute 

difference between displacements presented by Zhang (2003) [63] and those of 

the present technique is less than 0.1 [cm] in case (1) and 0.05 [mm] in the second 

one. 

For nonlinear analysis, the difference between the displacement from the present 

technique for Hlim = 6 [MN] and that measured displacement is less than 0.31 

[cm] in case (1), except when the load is 4330 [kN], the difference is 3.21 [cm]. 

But for Hlim = 5.45 [MN], the absolute difference is increased to 1.90 [cm] in the 

case of load = 4000 [kN]. The difference decreased to 0.05 [cm] when the load 

increase to be 4330 [kN]. In case (2), the difference is less than 0.43 [mm]. This 

difference is too small comparing to the barrette dimensions.    

Finally, The verification shows that the lateral load-displacement from the 

present linear and nonlinear analyses are in good agreement with those of the 

measured load tests and 3D FE carried out by Zhang (2003) [63]. 

L W 

H 

h
  

l 
w 



Validity of the analysis 
 

60 

 

 
Figure 4.28 Linear load-displacement curve, case (1). 

 

 
Figure 4.29 Nonlinear load-displacement curve, case (1). 
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Figure 4.30 Load-displacement curve, case (2). 

4.6 Comparative Study of the Present Hybrid Technique 

4.6.1 Description of the examination problem 

Single barrettes having a rectangular cross-section embedded in subsoil layers is 

analyzed using different numerical models, as follows: 

1. Model (1): Flexibility coefficient model of soil and CCT for barrettes. 

2. Model (2): Embedded pile in 3D finite element soil. 

3. Model (3): Traditional 3D finite element model. 

The composed coefficient technique CCT is implemented in the flexibility 

coefficient model presented in this study. In this case, the barrette is treated as 

one-dimension vertical elements. This technique reduces the time and size of the 

problem as these two terms considered as main difficulties in three-dimensional 

problems. In model (2), the barrette is analyzed as an embedded pile. However, 

treating this pile as one-dimensional beam elements, the soil is treated as block 

elements. In model (3), the barrette-soil system is treated by block elements. Both 

models (2) and (3) was analyzed by Plaxis [45]. 

The results of the three models are compared for verification. Two cases of single 

barrettes with different dimensions are considered. Each one was analyzed 

linearly, considering four different types of layered soil. The modulus of 

elasticity Es and Poisson's ratio νs of these soils are listed in Table 4.9 and sown 

0

200

400

600

800

0 1 2 3 4 5

L
at

er
al

 b
ar

re
tt

e 
lo

ad
  

[k
N

]
Barrette displacement u [mm]

Measured

Zhang (2003)

Present analysis-Nonlinear Hlim = 3 [MN]

Px

Ep = 35 106

[kN/m2]

H
=

 3
0
 [

m
]

W
=

 1
.2

 [
m

]

L = 2.7 [m]



Validity of the analysis 
 

62 

 

in Figure 4.31. Barrette geometry, lateral load on the barrette head, and modulus 

of elasticity for the chosen cases are listed in Table 4.10. 

Table 4.9 Soil properties. 

Soil  
Layer 

No. 
Soil description 

Layer depth 

from the ground 

surface 

z [m] 

Modulus of 

elasticity Es 

[MN/m2] 

Poisson’s 

ratio νs  

[-] 

(A) 1 Stiff clay ∞ 10 0.4 

(B) 1 
Medium dense 

sand 
∞ 25 0.30 

(C) 

1 Very stiff clay 2 20 0.35 

2 
Medium dense 

sand 
5 35 0.25 

3 Dense sand 8 50 0.20 

4 Dense sand ∞ 80 0.15 

(D) 

1 Very stiff clay 1.5 20 0.35 

2 Stiff clay 3.5 10 0.45 

3 
Medium dense 

sand 
8.5 40 0.25 

4 Dense sand ∞ 80 0.20 

Table 4.10 Barrette geometries. 

Case 
Cross-section 

[m2] 

Height 

[m] 

Modulus of elasticity of 

the barrette [kN/m2] 

Load 

[kN] 

1 2.8 × 0.8 40 30×106  3000  

2 2.7 × 1.2 30 30×106  3000  
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Figure 4.31 Boring logs. 
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4.6.2 Numerical analysis 

For model (1), the barrette height is divided into equal-elements, each of 1.25 

[m]. The barrette length and width are divided into four equal-elements. In model 

(2), the barrette represented as an embedded pile, beam element, and the soil 

treated as 3D finite elements then analyzed. In model (3), both barrettes and soil 

are treated as 3D finite elements with interface elements around the barrette then 

analyzed. In both models (2) and (3), barrettes and soil elements are generated 

automatically. The soil dimensions around the barrette are extended enough to 

ensure full interaction between the barrette and soil. It is taken 40 [m] in both the 

x and the y-directions and twice the barrette height in the z-direction. In this case, 

the barrette is analyzed linearly. Figure 4.32 to Figure 4.38 shows the element 

mesh for the single barrettes with different models. 

 
Figure 4.32 The surface element of the barrette for model (1). 

l 

L W 

H 

h
=

1
.2

5
 [

m
] 

w 



Chapter 4 
 

 65 

 

 
Figure 4.33 Element mesh of the single barrette - model (2) - Soil A&B. 

 
Figure 4.34 Element mesh of the single barrette - model (2) - Soil C&D. 
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Figure 4.35 Barrette with interface elements - model (3). 

 
Figure 4.36 Plan of element mesh of the single barrette - model (3).  
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Figure 4.37 Element mesh of the single barrette - model (3) - Soil A&B. 

 
Figure 4.38 Element mesh of the single barrette - model (3) - Soil C&D. 
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4.6.3 Results and discussion 

Barrette deformations and internal forces along the barrette height obtained from 

the different models are compared. Figure 4.39 to Figure 4.44 show an example. 

Other comparisons are shown in APPENDIX (A). 

Results show that the absolute differences between the barrettes head 

displacements in the present analysis Models (1) and that by Models (2) and (3), 

as shown in Figure 4.39, are less than 10.21% compared with Model (2) and 9.22% 

compared with Model (3), which are 0.22 and 0.13 [cm], respectively. 

In addition, the absolute differences between the computed barrettes base 

displacements in the present analysis Model (1) and those by Models (2) and (3), 

as shown in Figure 4.40, are less than 0.24 [cm] compared with Model (2) and 

0.26 [cm] compared with Model (3). This behavior is noticed for all cases except 

case (2) with soil type (A), which are 0.55 [cm] and 0.39 [cm], respectively. 

These differences are too small comparing to the barrette dimensions. 

Comparing the maximum bending moments using the present analysis Models 

(1) and those from Model (2), as shown in Figure 4.41, the differences are less 

than 16 %. The shear and bending moment results are depending on the element 

size in the z-direction. In Model (2), the elements are very small so that the shear 

force isn't smooth curve and the bending moment is greater than the present 

analysis.  

In general, it can be concluded that the results of the present analysis using the 

flexibility coefficient and CCT are in good agreement with both Models (2) and 

(3). 
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Figure 4.39 Comparison between Max. Displacements. 

 
Figure 4.40 Comparison between Min. Displacements. 
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Figure 4.41 Comparison between Max. Bending moments. 

 

 
Figure 4.42 Displacement u for case (1) with subsoil (A&C). 
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Figure 4.43 Bending moment for case (1) with subsoil (A&C). 

 
Figure 4.44 Shear force for case (1) with subsoil (A&C). 
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CHAPTER 5 

5 ANALYSIS OF BARRETTES 

5.1 Introduction 

A comparative study is presented for determining the effective-height of the 

barrette required for the single barrette subjected to lateral loads in a real-subsoil. 

The present hybrid analysis is compared with two different methods that are in 

the ECP 202 [56]. In addition, soil nonlinearity is studied by comparing results 

from the linear model with those of nonlinear. Furthermore, a parametric study 

for analyzing laterally loaded barrettes/barrette groups are presented to 

investigate the effect of load direction, barrette dimensions, barrettes/soil 

properties, the spacing between barrettes, and the barrette arrangement. 

5.2 Comparative Study of a Single Barrette in a Real Subsoil 

5.2.1 Introduction 

A comparative study is presented for determining the effective-height of the 

barrette and provides engineers with guidelines for analyzing laterally loaded 

single barrettes in east Port-Said, Figure 5.1. In this study, east Port-Said soil 

properties are considered because this area characterizes by extended soft clay 

layers. These are similar to the soil formation of London, Frankfurt, Rome, Hong 

kong, and Dammam. 
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Figure 5.1 East Port-Said location. 

5.2.2 Barrette properties 

The barrette material properties are listed in Table 5.1.  

Table 5.1 Barrette material properties. 

Modulus of elasticity of the barrette material Ec = 25×106 [kN/m2] 

Poisson's ratio of the barrette material  νc = 0.20 [-] 

Studied cases are carried out for a wide range of barrette dimensions, namely 

barrette lengths L and widths W with different barrette heights H. The effect of 

these variables on the barrette deformations and internal forces of laterally loaded 

barrette is investigated. Nine cases of single barrettes are considered, as presented 

in Table 5.2. Each one is considered and analyzed with various barrette 

heights H ranging from 20 to 60 [m] to determine the effective- height, in a total 

of more than 90 cases. 

Table 5.2 Studied cases of a single barrette. 

Length / Width L = 2.5 [m] L = 2.8 [m] L = 3.0 [m] 

W = 0.8 [m] Case 1 Case 2 Case 3 

W = 1.0 [m] Case 4 Case 5 Case 6 

W = 1.2 [m] Case 7 Case 8 Case 9 
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5.2.3 Soil properties 

The typical subsoil layers of the east Port-Said area presented previously by 

Hamza et al. (2000) [25] are considered in this analysis, as listed in Table 5.3 and 

shown in Figure 5.2. The subsoil consists of eight layers. Each layer has different 

unit weight 𝛾b, effective-shear strength parameters (c' and 𝜑'), undrained shear 

strength cu, modulus of elasticity Es, Poisson's ratio νs and horizontal modulus of 

soil reaction n determined according to ECP 202 [56]. 

Table 5.3 Subsoil properties, Hamza et al. (2000) [25]. 

Layer  

No. 

Soil 

type 

z 

[m] 

𝛾b 

kN/m3 

c' 

kN/m2 

𝜑' 

[°] 

cu 

kN/m2 

Es 

MN/m2 

νs 

[-] 

n 

MN/m3 

1 
Soft 

clay 
5 17 10 24 20 2.4 0.2 0 

2 

Medium 

dense 

sand 

13.5 18.5 0 35 - 30 0.25 6.15 

3 

Medium 

stiff 

clay 

28.5 15.5 22 24 46 20.5 0.2 3.7 

4 
Stiff 

clay 
38.5 15 31 20 61.5 24.7 0.2 3.7 

5 
Stiff 

clay 
48.5 15 37 20 74 28.1 0.2 3.7 

6 
Stiff 

clay 
58.5 15 43 20 86 31.4 0.2 3.7 

7 

Very 

Stiff 

clay 

92.5 17.5 75 20 150 60 0.2 3.7 

8 
Dense 

sand 
120 20 0 35 - 144 0.2 11.1 
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Figure 5.2 East Port-Said boring log. 

5.2.4 Effective barrette height 

According to the ECP 202 [56], there are two methods for determining the 

effective-height. These are approximate methods to assess the effective-height of 

square or circular piles in homogeneous soil. The first one depends on the 

horizontal modulus of soil reaction, while the second depends on the soil modulus 

T 

5.00 

Soft clay 
Gam=17 [kN/m3], c'=10 [kN/m2], FHI'=24 [°], Cu=20 [kN/m2] 
Es=2.4 [MN/m2], vs=0.2, n=0 [MN/m3] 

S 

13.50 

Medium dense sand 
Gam=18.5 [kN/m3], c'=0 [kN/m2], FHI'=35 [°], Cu=0 [kN/m2] 
Es=30 [MN/m2], vs=0.25, n=6.15 [MN/m3] 

T 

28.50 

Medium clay 
Gam=15.5 [kN/m3], c'=22 [kN/m2], FHI'=24 [°], Cu=46 [kN/m2] 
Es=20.5 [MN/m2], vs=0.2, n=3.7 [MN/m3] 

T 

38.50 

Stiff clay 
Gam=15 [kN/m3], c'=31 [kN/m2], FHI'=20 [°], Cu=64.5 [kN/m2] 
Es=24.7 [MN/m2], vs=0.2, n=3.7 [MN/m3] 

T 

48.50 

Stiff clay 
Gam=15 [kN/m3], c'=37 [kN/m2], FHI'=20 [°], Cu=74.2 [kN/m2] 
Es=28.1 [MN/m2], vs=0.2, n=3.7 [MN/m3] 

T 

58.50 

Stiff clay 
Gam=15 [kN/m3], c'=43 [kN/m2], FHI'=20 [°], Cu=86 [kN/m2] 
Es=31.4 [MN/m2], vs=0.2, n=3.7 [MN/m3] 

T 

92.50 

Very Stiff clay 
Gam=17.5 [kN/m3], c'=75 [kN/m2], FHI'=20 [°], Cu=150 [kN/m2] 
Es=60 [MN/m2], vs=0.2, n=3.7 [MN/m3] 

S 

120.00 

Dense sand 
Gam=20 [kN/m3], c'=0 [kN/m2], FHI'=35 [°], Cu=0 [kN/m2] 
Es=144 [MN/m2], vs=0.2, n=11.1 [MN/m3] 

T, Clay 

S, Sand 
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of elasticity. The barrette is analyzed many times with different barrette heights 

ranging from 20 to 60 [m] to investigate the effective-height as follows: 

• Method (1): Horizontal modulus of soil reaction. 

• Method (2): The soil modulus of elasticity. 

• Present analysis. 

5.2.4.1 Method (1): Horizontal modulus of soil reaction. 

The ECP 202 [56] equations for determining the effective-height using the 

horizontal modulus of soil reaction are used in this analysis, equations (37) and 

(38). In case the barrette crosses layered soil, these moduli are taken as an 

equivalent horizontal modulus of soil reaction neq, [kN/m3] according to Eq. (39). 

This equivalent horizontal modulus is taken as a ratio of the element length that 

crosses these layers, as shown in Figure 5.3. The effective-barrette height for each 

case listed in Table 5.2 is determined by substituting this equivalent horizontal 

modulus into the ECP 202 [56] equations.  

 
𝑡 = √

𝐸𝑝𝐼𝑝

𝑛

5

 (37) 

 
𝐻𝑒 = 4 × 𝑡 (38) 

 
𝑛𝑒𝑞 =

∑𝑛𝑖𝐻𝑖

∑𝐻𝑖
 (39) 

Where: 

Ep Modulus of elasticity of the barrette material, [kN/m2]; 

Ip Moment of inertia of the barrette, [m4]; 

t Elastic barrette height, [m]; 

He Effective barrette height, [m]; 

neq Equivalent horizontal modulus of soil reaction, [kN/m3]; 

ni Horizontal modulus of soil reaction for layer i, [kN/m3]; and 

Hi The barrette height that crosses layer i, [m]. 
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Figure 5.3 The geometry of the barrette lies between different soil layers. 

The effective-height is defined as the height in which the analysis results are not 

influenced by increasing this height. Nine cases are considered to determine that 

effective-height using the horizontal modulus of soil reaction considering various 

barrette heights, H = 20, 30, 40, 50, and 60 [m], as listed in Table 5.2. The 

equivalent horizontal modulus of soil reaction is determined according to Eq. 

(39), which depends on the barrette height only, as listed in Table 5.4.  
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Table 5.4 The equivalent horizontal modulus of soil reaction, neq. 

Barrette 

height 

H [m] 

Layer depth 

from the ground 

surface 

z [m] 

Horizontal modulus 

of soil reaction n 

[kN/m3] 

Equivalent 

horizontal modulus 

of soil reaction neq 

[kN/m3] 

20 

5 0 

3816 13.5 6150 

20 3700 

30 

5 0 

3778 
13.5 6150 

28.5 3700 

30 3700 

40 

5 0 

3758 

13.5 6150 

28.5 3700 

38.5 3700 

40 3700 

50 

5 0 

3747 

13.5 6150 

28.5 3700 

38.5 3700 

48.5 3700 

50 3700 

60 

5 0 

3739 

13.5 6150 

28.5 3700 

38.5 3700 

48.5 3700 

58.5 3700 

60 3700 

Substituting the equivalent horizontal modulus of soil reaction neq listed in Table 

5.4 into Eq. (37) leads to: 

 
𝑡 = √

𝐸𝑝𝐼𝑝

𝑛𝑒𝑞

5

 (40) 

The effective-height is determined for the nine cases by substituting the elastic-

height from Eq. (40) into Eq. (38). Then these are listed in Table 5.5 as the first 

iteration of determining that effective-height. For case (1) as an example in this 
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table, it can be concluded that the effective-height is 23.38 [m] while the barrette 

height is 20 [m]. In this condition, the equivalent horizontal modulus of soil 

reaction neq doesn’t represent the soil surrounding the barrette, which needs to be 

recalculated according to a barrette height equal to this effective-height. 

Otherwise, the effective-height seems to be approximately constant when 

increasing the barrette height to 30 [m] or more for this case. So, the effective-

height for this case is between 20 and 30 [m]. Accordingly, the next iteration 

considered the barrette height to be the effective-height of the first iteration 23.43 

[m]. Applying this methodology for determining the effective-height of the nine 

cases listed in Table 5.2 leads to Table 5.6. 

Table 5.5 Effective barrette height using method (1), first iteration. 

Barrette Width 

W, [m] 

Barrette Height 

H, [m] 

Barrette Length L, [m] 

2.5 2.8 3.0 

0.8 

20 23.38 25.03 26.08 

30 23.43 25.08 26.14 

40 23.45 25.10 26.16 

50 23.47 25.12 26.18 

60 23.48 25.13 26.19 

1.0 

20 24.45 26.17 27.27 

30 24.50 26.22 27.33 

40 24.52 26.25 27.36 

50 24.54 26.26 27.37 

60 24.55 26.28 27.39 

1.2 

20 25.36 27.14 28.29 

30 25.41 27.20 28.34 

40 25.43 27.22 28.37 

50 25.45 27.24 28.39 

60 25.46 27.25 28.40 

Table 5.6 Effective barrette height, Method (1). 

Length / Width L = 2.5 [m] L = 2.8 [m] L = 3.0 [m] 

W = 0.8 [m] 23.40 25.06 26.12 

W = 1.0 [m] 24.48 26.21 27.32 

W = 1.2 [m] 25.39 27.18 28.34 
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5.2.4.2 Method (2): The soil modulus of elasticity. 

The ECP 202 [56] equation for determining the effective-height using the soil 

modulus of elasticity is used in this analysis, Eq. (41). In case the barrette crosses 

layered soil, these moduli are taken as an equivalent soil modulus of elasticity 

Eseq, [kN/m2] according to Eq. (42). This equivalent modulus is taken as a ratio 

of the element length that crosses these layers, as shown in Figure 5.4. The 

effective-height for each case listed in Table 5.2 is determined by substituting 

this equivalent modulus into the ECP 202 [56] equations.  

 

𝐻𝑒 = 4.44 × √
𝐸𝑝𝐼𝑝

𝐸𝑠

4

 (41) 

 

𝐸𝑠𝑒𝑞 =
∑𝐸𝑠𝑖𝐻𝑖

∑𝐻𝑖
 (42) 

Where: 

He Effective barrette height, [m]; 

Ep  Modulus of elasticity of the barrette material, [kN/m2]; 

Ip Moment of inertia of the barrette, [m4]; 

Es Modulus of elasticity of the soil, [kN/m2]; 

Eseq Equivalent soil modulus of elasticity, [kN/m2]; 

Esi Soil modulus of elasticity for layer i, [kN/m2]; and 

Hi The barrette height that crosses layer i, [m]. 

 
Figure 5.4 The geometry of the barrette lies between different soil layers. 
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Nine cases are considered to determine that effective-height using the modulus 

of elasticity considering various barrette heights, H = 20, 30, 40, 50, and 60 [m], 

as listed in Table 5.2. The equivalent modulus of elasticity is determined 

according to Eq. (42), which depends on the barrette height only, as listed in 

Table 5.7.  

Table 5.7 The equivalent modulus of elasticity, Eseq kN/m2. 

Barrette 

height 

H [m] 

Layer depth 

from the ground surface 

z [m] 

Modulus of 

elasticity Es 

[kN/m2] 

Equivalent modulus of 

elasticity Eseq [kN/m2] 

20 

5 2400 

20013 13.5 30000 

20 20500 

30 

5 2400 

20385 
13.5 30000 

28.5 20500 

30 24700 

40 

5 2400 

21591 

13.5 30000 

28.5 20500 

38.5 24700 

40 28100 

50 

5 2400 

22992 

13.5 30000 

28.5 20500 

38.5 24700 

48.5 28100 

50 31400 

60 

5 2400 

25108 

13.5 30000 

28.5 20500 

38.5 24700 

48.5 28100 

58.5 31400 

60 60000 

Substituting the equivalent modulus of elasticity Eseq listed in Table 5.7 into Eq. 

(41) leads to: 
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𝐻𝑒 = 4.44 × √
𝐸𝑝𝐼𝑝

𝐸𝑠𝑒𝑞

4

 (43) 

The effective-height for the nine cases is determined according to Eq. (43). Then 

these are listed in Table 5.5 as the first iteration of determining that effective-

height. For case (9) as an example in this table, it can be concluded that the 

effective-height is 33.84 [m] while the barrette height is 20 [m]. In this condition, 

the equivalent modulus of elasticity Eseq doesn’t represent the soil surrounding 

the barrette, which needs to be recalculated according to a barrette height equal 

to this effective-height. Otherwise, the effective-height seems to be 

approximately constant when increasing the barrette height to 30 [m] or more for 

this case. So, the effective-height for this case is between 30 and 40 [m]. 

Accordingly, the next iteration considered the barrette height to be the effective-

height of the first iteration 33.68 [m]. Applying this methodology for determining 

the effective-height of the nine cases listed in Table 5.2 leads to Table 5.9. 

Table 5.8 Effective barrette height using method (2), first iteration. 

Barrette Width 

W, [m] 

Barrette Height 

H, [m] 

Barrette Length L, [m] 

2.5 2.8 m 3 m 

0.8 

20 26.67 29.03 30.57 

30 26.54 28.90 30.43 

40 26.17 28.49 30.00 

50 25.76 28.04 29.53 

60 25.20 27.43 28.89 

1.0 

20 28.20 30.70 32.33 

30 28.07 30.56 32.18 

40 27.67 30.12 31.72 

50 27.24 29.65 31.23 

60 26.64 29.01 30.55 

1.2 

20 29.51 32.13 33.84 

30 29.38 31.98 33.68 

40 28.96 31.53 33.20 

50 28.51 31.03 32.68 

60 27.88 30.36 31.97 

Table 5.9 Effective barrette height, Method (2). 

Length / Width L = 2.5 [m] L = 2.8 [m] L = 3.0 [m] 

W = 0.8 [m] 26.63 28.96 30.41 

W = 1.0 [m] 28.15 30.55 32.09 

W = 1.2 [m] 29.41 31.90 33.51 
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5.2.4.3 Using the present analysis 

A comparative test of the numerical model for analyzing laterally loaded single 

barrette in east Port-Said is performed to determine the effective-height using the 

present analysis. Nine cases are considered in this analysis, as listed in Table 5.2. 

Each one is considered and analyzed with various barrette heights H ranging 

from 20 to 60 [m] to determine the effective-height. The barrette-soil interface is 

divided into elements with a height of h = 1.0 [m]. The barrette length and width 

are divided into equal five- and four-elements, respectively, as shown in Figure 

5.5. The barrette is considered to be an elastic body in a continuum soil medium. 

And the load-displacement relation is determined according to the linear analysis 

of single barrettes. The lateral load on the barrette head is taken constant for all 

cases and equal to 1000 [kN]. 

 
Figure 5.5 The surface element of the single barrette. 

Figure 5.6 to Figure 5.10 shows displacements u, reaction forces Rx, shear forces 

Qx, bending moments My and barrette rotations Theta-y with different barrette 

heights obtained by the present analysis, for case (1) as an example. From these 

figures, it can be concluded that the analysis results are not influenced by 

increasing the barrette height to more than 30 [m] for this case. So, the effective-

height for this case is between 20 and 30 [m]. Accordingly, this case is considered 

and analyzed with various barrette heights H ranging from 20 to 30 [m]. 

Applying this methodology for determining the effective-height of the nine cases 

listed in Table 5.2 leads to Table 5.10. 

l w 
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Table 5.10 Effective barrette height, the present analysis. 

Length / Width L = 2.5 [m] L = 2.8 [m] L = 3.0 [m] 

W = 0.8 [m] 29 31 33 

W = 1.0 [m] 31 33 34 

W = 1.2 [m] 32 34 36 

Other comparisons of displacements u, reaction forces Rx, shear forces Qx, 

bending moments My and barrette rotations Theta-y for different cases with 

different barrette heights are shown in APPENDIX (B). 

 
Figure 5.6 Displacement u with the barrette height (case 1). 
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Figure 5.7 Reaction forces Rx with the barrette height (case 1). 

 

 
Figure 5.8 Shear forces Qx with the barrette height (case 1). 

 

0

10

20

30

40

50

60

-200 -100 0 100 200 300 400
D

is
ta

n
ce

 z
[m

]
Reaction forces Rx [kN]

H =20 [m]
H =30 [m]
H =40 [m]
H =50 [m]
H =60 [m]

W
=

 0
.8

 [
m

] L = 2.5 [m]

18

20

22

24

26

28

30

-120 -70 -20 30 80

H =20 [m]

H =22 [m]

H =24 [m]

H =26 [m]

H =28 [m]

H =29 [m]

H =30 [m]

0

10

20

30

40

50

60

-600 -400 -200 0 200 400 600 800 1000

D
is

ta
n
ce

 z
[m

]

Shear forces Qx [kN]

H =20 [m]
H =30 [m]
H =40 [m]
H =50 [m]
H =60 [m]

W
=

 0
.8

 [
m

] L = 2.5 [m]

18

22

26

30

-200 -150 -100 -50 0 50

H =20 [m]

H =22 [m]

H =24 [m]

H =26 [m]

H =28 [m]

H =29 [m]

H =30 [m]



Analysis of barrette foundations 
 

86 

 

 
Figure 5.9 Bending moments My with the barrette height (case 1). 

 

 
Figure 5.10 Barrette rotations Theta-y with the barrette height (case 1). 
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5.2.4.4 Results and discussion 

Figure 5.11 presents a comparison of effective-height Le using different methods 

with that of the present analysis for the nine cases listed in Table 5.2, which 

shows that the absolute differences in results between the present hybrid-

technique and both the first and second methods (1) and (2) are 23.70% to 26.63%, 

and 5.95% to 10.12%, respectively. 

 
Figure 5.11 Comparison of effective barrettes height Le. 

Equations (38) and (43) for determining the effective-height of a square or a 

circular pile in a homogeneous soil can be modified to be used for determining 

the effective-height in multi-layered soil to be equations (44) and (45) for both 

the first and second methods. 

 𝐻𝑒 = 5 × 𝑡 (44) 

 𝐻𝑒 = 4.8 × √
𝐸𝑝𝐼𝑝

𝐸𝑠𝑒𝑞

4

 (45) 

Figure 5.12 presents a comparison of effective barrettes heights Le using different 

modified methods with that of the present analysis for the nine cases listed in 

Table 5.2, which shows that the absolute difference between the present hybrid-

technique and modified methods (1) and (2) is 0.07% to 1.62% and 0.08% to 

1.99%, respectively. 
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Figure 5.12 Comparison of modified effective barrettes height Le. 
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barrette with a height less than 20 [m] is relatively rigid. The analysis results are 

not influenced by increasing the barrette height to more than 40 [m]. The 
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5.2.5 The maximum bending moment and barrette head displacement 

The ECP 202 [56] equations for determining the maximum bending moment and 

the pile head displacement of the laterally loaded pile with free head support are 
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3
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 (46) 

 
𝑀𝑚𝑎𝑥 = 0.77(𝑃𝑥𝑜𝑡 + 𝑀𝑦𝑜)  (47) 

Where: 

Ep Modulus of elasticity of the barrette material, [kN/m2]; 

Ip Moment of inertia of the barrette, [m4]; 
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uo The barrette head displacement, [cm]; and 

Mmax The maximum bending moment along the barrette height , [kN.m]. 

5.2.5.1 Barrette supjected to lateral load only (Myo = Zero). 

The maximum bending moment and barrette head displacement for each case 

listed in Table 5.2 is determined with Myo equal to Zero and then compared with 

the present analysis results and shown in Figure 5.13 and Figure 5.14. 

 

Figure 5.13 Comparison of barrette head displacement uo (Myo =0). 
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Figure 5.14 Comparison of maximum bending moment of the barrette Mmax 

(Myo =0). 
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when Myo equal to Zero. 

 𝑢𝑜 = 3
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3
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𝑀𝑚𝑎𝑥 = 0.8  𝑃𝑥𝑜𝑡   (49) 

Figure 5.15 and Figure 5.16 presents a comparison of the maximum bending 
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Figure 5.15 Comparison of modified barrette head displacement uo (Myo =0). 

 

Figure 5.16 Comparison of modified maximum bending moment of the barrette 

Mmax (Myo =0). 
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5.2.5.2 Barrette supjected to bending moment only (Pxo = Zero). 

The barrette head displacement for each case listed in Table 5.2 is determined 

with Pxo equal to Zero and then compared with the present analysis results and 

shown in Figure 5.17. In this case, The maximum bending moment = Myo, which 

is taken to be 2000 [kN.m]. It was found that the absolute difference is ranging 

from 18.25% to 30.27%.  

 

Figure 5.17 Comparison of barrette head displacement uo (Pxo =0). 

Eq. (46) for determining the pile head displacement of a square or a circular pile 

with free head support can be modified to be used for determining the barrette 

head displacement to be eq. (56) when Pxo =0. 

𝑢𝑜 =
2𝑀𝑦𝑜𝑡

3

𝐸𝑝𝐼𝑝
 (50) 
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Figure 5.18 Comparison of modified barrette head displacement uo (Pxo =0). 

5.2.5.3 Barrette supjected to lateral load and bending moment. 

The ECP 202 [56] equations for determining the maximum bending moment and 

the pile head displacement of the laterally loaded pile with free head support 

equations (46) and (47) can be written as equations (51) and (52) to be used for 

the laterally loaded single barrette. The results using these equations are 

compared with those from the present analysis for the nine cases listed in Table 

5.2, as shown in Figure 5.19 and Figure 5.20 where Myo = 2000 [kN.m] and Pxo 

= 1000 [kN].  
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Figure 5.19 Comparison of barrette head displacement uo. 

 

Figure 5.20 Comparison of maximum bending moment of the barrette Mmax. 
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Eq. (52) for determining the maximum bending moment can be modified to be 

Eq. (53). The results using this equation are compared with those from the present 

analysis for the nine cases listed in Table 5.2, as shown in Figure 5.21. The 

absolute differences in results are decreased to be 0.06% to 2.51%. 

 𝑀𝑚𝑎𝑥 = 0.8 (𝑃𝑥𝑜𝑡 + 𝑀𝑦𝑜) (53) 

 

Figure 5.21 Comparison of modified maximum bending moment of the barrette 

Mmax. 
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replacing Broms equations [10]. Equations (54) and (55) are used to determine 

the ultimate lateral load of piles in sand and clay, respectively. 

 𝐻𝑢𝑙𝑡 = 0.5 𝐾𝑝
2 𝛾` 𝑧2 𝐷 (54) 

 𝐻𝑢𝑙𝑡 = 9 𝑐𝑢 𝑧 𝐷 (55) 

Where: 

Kp Passive earth pressure coefficient, [-]; 

γ` Submarged unit weight of soil, [kN/m3]; 

D The diameter of the pile with the same moment of inertia, [m]; 

z Depth from the ground surface, [m]; 

cu Undrained cohesion of clay, [kN/m2]; and 

Hult Ultimate lateral load, [kN]. 

To use these equations to determine the ultimate lateral load of single 

barrettes, D is taken as the diameter of the pile with the same moment of inertia. 

The ultimate lateral load of single barrettes Hult and the horizontal limit load of 

single barrettes Hlim are calculated and listed in Table 5.11 and Table 5.12. 

Table 5.11 The ultimate lateral load of the barrettes Hult, [kN]. 

Length / Width L = 2.5 [m] L = 2.8 [m] L = 3.0 [m] 

W = 0.8 [m] 67130 75798 82680 

W = 1.0 [m] 73616 83015 88934 

W = 1.2 [m] 78428 88388 96244 

Table 5.12 The horizontal limit load of the barrettes Hlim, [kN]. 

Length / Width L = 2.5 [m] L = 2.8 [m] L = 3.0 [m] 

W = 0.8 [m] 51824 58516 63829 

W = 1.0 [m] 56832 64088 68657 

W = 1.2 [m] 60546 68235 74300 

5.2.7 Guideline for analyzing single barrettes 

Guidelines for engineers when analyzing laterally loaded barrettes in east Port-

Said or similar formations are presented. Single barrettes of different lateral loads 

and geometries are analyzed linearly and nonlinearly using the hyperbolic 

function. The limit lateral displacements for single barrettes in this analysis is 

taken as 5% of the barrette width B. This value is considered as an acceptable 

practical value for analyzing barrettes. Table 5.13 lists a summary of the analysis 

results. In this table, barrette loads for each case study are listed, in addition to 

the maximum bending moments when applying these loads. Figure 5.22 shows 
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the load-displacement curve according to the hyperbolic function for case 1 as an 

example. Other comparisons are shown in APPENDIX (C). 

Table 5.13 Summary results of analyzing single barrettes using nonlinear 

analysis. 

Case 
Cross-section 

[m2] 
Height 

[m] 

Limit 

displacement 

[cm] 

Load 

Px 

[kN] 

Max. Bending 

moment Mmax 

[kN.m] 

1 2.5 × 0.8  29  4  1610 7795 

2 2.8 × 0.8  31  4  1885 9622 

3 3.0 × 0.8  33  4  2078 10934 

4 2.5 × 1.0  31  5  2228 11131 

5 2.8 × 1.0  33  5  2627 13880 

6 3.0 × 1.0  34  5  2827 15265 

7 2.5 × 1.2  32  6  2896 14801 

8 2.8 × 1.2  34  6  3506 18387 

9 3.0 × 1.2  36  6  3665 20292 

 
Figure 5.22 The load-displacement curve for Case (1). 
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5.3 Parametric Study of Single Barrettes  

5.3.1 Introduction 

An application of the proposed hybrid technique is used to investigate the effect 

of barrette width W, barrette length L, barrette height H, modulus of elasticity of 

the barrette material Ep, modulus of elasticity of the soil Es, Poisson’s ratio of the 

soil νs, and load direction α on the barrette displacement.  

The effect of load direction on the displacement of a single barrette is studied. 

Displacements with different load directions α are compared to those of the same 

single barrette with load direction α = 0˚. The change of displacement is 

expressed by displacement ratio Rs [-], which is given by Eq. (56): 

 𝑅𝑠 =
𝑢𝑠

𝑢0⁄  (56) 

Where:  

Rs  Single barrette displacement ratio Rs, [-]; 

us  Studied single barrette displacement with different load directions α, [m]; 

and  

uo  Single barrette displacement with load direction α = 0˚, [m]. 

5.3.2 Material properties and parameters of interest 

Table 5.14 lists groups of dimensionless parameters that are considered. A 

barrette width of W = 1 m and lateral load is taken to be that causes a barrette-

head displacement equal to 5% of the barrette width W. This displacement could 

be an acceptable value of an allowable lateral displacement of the single barrette. 

Table 5.14 Dimensionless groups of parameters used in the analysis. 

Dimensionless group Notation Considered values 

Barrette height to width ratio H / W 10, 25, 50 

Barrette length to width ratio L / W 1.0, 1.5, 2.0, 2.5, 3.0 

Barrette-soil elasticity ratio Ep / Es 1000, 2000, 3000, 4000, 5000 

Poisson’s ratio of the soil  νs 0.1, 0.2, 0.3, 0.4, 0.5 

Load direction  α 0˚, 22.5˚, 45˚, 67.5˚, 90˚ 

5.3.3 Results and discussion 

5.3.3.1 Effect of load direction, Barrette length to width ratio, and Barrette - 

soil elasticity ratio 

Figure 5.23 to Figure 5.27 presents the evolution of the displacement ratio Rs as 

a function of the load direction α for various barrette length to width ratios L/W, 

load direction α, and barrette-soil elasticity ratios Ep/Es, as listed in Table 5.14. 
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The barrette height to width ratio H/W = 25 [-] and Poisson’s ratio of the soil νs 

= 0.3 [-]. The increasing displacement ratio Rs with increasing load direction α 

are shown according to the previously mentioned comments. The displacement 

ratio increases as L/W increases, load direction increases, and Ep/Es decreases, 

where barrettes become stiffer. Except for the square barrette (pile), the 

displacement ratio will be constant while increasing the load direction.   

 
Figure 5.23 The displacement ratio Rs for L/W = 1.5 [-]. 
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Figure 5.24 The displacement ratio Rs for L/W = 2.0 [-]. 

 

 
Figure 5.25 The displacement ratio Rs for L/W = 2.5 [-]. 
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Figure 5.26 The displacement ratio Rs for L/W = 3.0 [-]. 

 

 
Figure 5.27 The displacement ratio Rs for various barrette L/W. 
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5.3.3.2 Effect of Poisson’s ratio of the soil 

Figure 5.28 presents the evolution of the displacement ratio Rs as a function of 

the load direction α for various Poisson’s ratio of the soil and load direction α, as 

listed in Table 5.14. The barrette length to width ratios L/W = 2.0 [-], barrette 

height to width ratio H/W = 25 [-] and barrette-soil elasticity ratios Ep/Es = 3000 

[-]. The increasing displacement ratio Rs with increasing load direction α are 

shown according to the previously mentioned comments. The displacement ratio 

decreases with increasing Poisson’s ratio of the soil νs.  

 

Figure 5.28 The displacement ratio Rs for the effect of νs. 
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5.3.3.3 Effect of barrette height to width ratio 

Figure 5.29 presents the evolution of the displacement ratio Rs as a function of 

the load direction α for various barrette height to width ratio H/W and load 

directions α, as listed in Table 5.14. The barrette length to width ratios L/W = 2.0 

[-], barrette-soil elasticity ratios Ep/Es = 3000 [-] and Poisson’s ratio of the soil νs 

= 0.3 [-]. The increasing displacement ratio with increasing load direction α is 

shown according to the previously mentioned comments. Although the 

displacement ratio Rs decreases with decreasing the barrette height to width ratio 

H/W, where the barrette becomes more rigid, increasing the barrette height to 

width ratio H/W more than 30 has a very small effect, where the barrette height 

is reached to the effective-height of the barrette. 

 
Figure 5.29 The displacement ratio Rs for the effect of H/W. 
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5.4 Parametric Study of Barrette Groups 

5.4.1 Introduction 

An application of the proposed hybrid technique is used to investigate the effect 

of barrette width W, barrette length L, barrette height H, barrette spacing S, 

number of barrettes, modulus of elasticity of the barrette material Ep, Modulus of 

elasticity of the soil Es, Poisson’s ratio of the soil νs, and load direction α on the 

barrette group displacement. 

Two barrettes are considered in this study to investigate the lateral load effect on 

the barrette group displacement, as shown in Figure 5.30. 

 
Figure 5.30 The geometry of two barrettes as a barrette group. 

The group effect is illustrated by studying the ratio between the barrette group 

displacements to that of a single barrette. The group effect is expressed by 

displacement ratio Rs [-], which is given by Eq. (57): 

 𝑅𝑔 =
𝑢𝑔

𝑢𝑠⁄  (57) 

Where: 

Rg  Barrette group displacement ratio Rg, [-]; 

ug Studied barrette group displacement, [m]; and  

us  Single barrette displacement, [m]. 

5.4.2 Material properties and parameters of interest 

Table 5.15 lists groups of dimensionless parameters that are considered. A 

barrette width of W = 1 m and lateral load is taken to be that causes a barrette-

head displacement equal to 5% of the barrette width W. This displacement could 

be an acceptable value of an allowable lateral displacement of the single barrette. 
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Table 5.15 Dimensionless groups of parameters used in the analysis. 

Dimensionless group Notation Considered values 

Barrette spacing ratio S / L 2, 2.5, 3, 5, 10, 20, 50 

Barrette breadth ratio L / S 0.5, 0.4, 0.33, 0.2, 0.1, 0.05, 0.02 

Barrette height to width ratio H / W 10, 25, 50 

Barrette length to width ratio L / W 1.0, 1.5, 2.0, 2.5, 3.0 

Barrette-soil elasticity ratio Ep / Es 1000, 2000, 3000, 4000, 5000 

Poisson’s ratio of the soil  νs 0.1, 0.2, 0.3, 0.4, 0.5 

Load direction  α 0˚, 22.5˚, 45˚, 67.5˚, 90˚ 

Number of barrettes - 2, 3, 4 

5.4.3 Results and discussion 

5.4.3.1 Effect of Barrette spacing, Barrette length to width ratio, and Barrette 

- soil elasticity ratio 

Figure 5.31 to Figure 5.36 presents the evolution of the displacement ratio Rg as 

a function of the spacing between barrettes for various barrette length to width 

ratios L/W and barrette-soil elasticity ratios Ep/Es, as listed in Table 5.15. The 

barrette height to width ratio H/W = 25 [-], load direction α = 0º, and Poisson’s 

ratio of the soil νs = 0.3 [-]. The displacement ratio Rg decrease with 

increasing the normalized center to center distance between barrettes S/L, as 

shown according to the previously mentioned comments. The displacement ratio 

Rg decreases as L/W increases and Ep/Es decreases, where barrettes become stiffer. 

 
Figure 5.31 The displacement ratio Rg for L/W = 1.0 [-]. 
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Figure 5.32 The displacement ratio Rg for L/W = 1.5 [-]. 

 

 
Figure 5.33 The displacement ratio Rg for L/W = 2.0 [-]. 
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Figure 5.34 The displacement ratio Rg for L/W = 2.5 [-]. 

 

 
Figure 5.35 The displacement ratio Rg for L/W = 3.0 [-]. 
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Figure 5.36 The displacement ratio Rg with various L/W. 

  

Normalized breadth L/S [-]
0.15 0.10 0.05 0.000.20 0.15 0.10 0.05 0.000.20

H/W = 25 [-]

Ep/Es = 3000 [-]

vs = 0.3 [-]

α = 0º

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5

D
is

p
la

ce
m

et
 r

at
io

 R
g

[-
]

Normalized spacing S/L [-]

L/W = 1.0

L/W = 1.5

L/W = 2.0

L/W = 2.5

L/W = 3.0



Chapter 5 
 

 109 

 

5.4.3.2 Effect of Poisson’s ratio of the soil 

Figure 5.37 presents the evolution of the displacement ratio Rg as a function of 

the normalized center to center distance between barrettes S/L for various 

Poisson’s ratio of the soil, as listed in Table 5.15. The barrette length to width 

ratios L/W = 2.0 [-], barrette height to width ratio H/W = 25 [-], barrette-soil 

elasticity ratios Ep/Es = 3000 [-], and load direction α = 0º. The displacement ratio 

Rg decrease with increasing the normalized center to center distance between 

barrettes S/L, as shown according to the previously mentioned comments. The 

displacement ratio Rg decreases as Poisson’s ratio of the soil νs decreases.   

 
Figure 5.37 The displacement ratio Rg for the effect of νs. 

5.4.3.3 Effect of barrette height to width ratio 

Figure 5.38 presents the evolution of the displacement ratio Rg as a function of 

the normalized center to center distance between barrettes S/L for various barrette 

height to width ratio H/W, as listed in Table 5.15. The barrette length to width 

ratios L/W = 2.0 [-], load direction α = 0º, barrette-soil elasticity ratios Ep/Es = 

3000 [-], and Poisson’s ratio of the soil νs = 0.3 [-]. The displacement ratio Rg 

decrease with increasing the normalized center to center distance between 

barrettes S/L, as shown according to the previously mentioned comments. 

Although the displacement ratio Rg decreases with decreasing the barrette height 

to width ratio H/W, where the barrettes become more rigid, increasing the barrette 

height to width ratio H/W more than 30 has a very small effect, where barrettes 

height are reached to the effective-height of the barrette. 
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Figure 5.38 The displacement ratio Rg for the effect of H/W. 

5.4.3.4 Effect of numbers of barrettes 

The groups of three and four barrettes are considered to study the effect of the 

number of barrettes, as shown in Figure 5.39 and Figure 5.40.  

 
Figure 5.39 The groups of three barrettes. 

 
Figure 5.40 The groups of four barrettes. 
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Figure 5.41 presents the evolution of the displacement ratio Rg as a function of 

the normalized center to center distance between barrettes S/L for a various 

number of barrettes, as shown in Figure 5.39 and Figure 5.40, and listed in Table 

5.15. The barrette length to width ratios L/W = 2.0 [-], barrette height to width 

ratio H/W = 25 [-], load direction α = 0º, barrette-soil elasticity ratios Ep/Es = 

3000 [-], and Poisson’s ratio of the soil νs = 0.3 [-]. The displacement ratio Rg 

decrease with increasing the normalized center to center distance between 

barrettes S/L, as shown according to the previously mentioned comments. The 

displacement ratio Rg decreases with decreasing the number of barrettes in the 

barrette group. 

 
Figure 5.41 The displacement ratio Rg for the effect of barrettes number. 

5.4.3.5 Effect of load direction 
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Figure 5.42 The displacement ratio Rg for the effect of α, Group of 2 barrettes. 

 

 
Figure 5.43 The displacement ratio Rg for the effect of α, Group of 3 barrettes, 

B1. 
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Figure 5.44 The displacement ratio Rg for the effect of α, Group of 3 barrettes, 

B2&B3. 

 

 
Figure 5.45 The displacement ratio Rg for the effect of α, Group of 4 barrettes. 
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

Most researches on barrettes were performed using three-dimensional finite 

element methods. While this technique considered the full interactions between 

barrettes and the surrounding soil, it leads to a huge-stiffness matrix. Therefore, 

large-systems of equations have to be solved. Consequently, this analysis is time 

consuming even for the fast computers of today. Methods for analyzing piles are 

used to simplify this problem. In those methods, barrettes are treated as piles with 

an equivalent cross-sectional area. The disadvantage of using these methods in 

barrettes analyses is that the three-dimensional natural geometry of barrettes and 

soil was neglected. 

In this thesis, a numerical technique for analyzing vertically loaded barrettes 

previously presented by the author (2016) [18] is extended to analyze laterally 

loaded single barrettes and barrette groups. The full three-dimensional 

interactions between barrettes, surrounding soil, and the group interaction of 

every single barrette on the barrette group is considered by generating the full 

soil-stiffness matrix. The presented technique is based on the flexibility 

coefficients of Mindlin’s solution and one-dimensional finite elements. The CCT 

is used to compose the full soil-stiffness matrix. The resulting matrix is added to 

the barrette stiffness generating the full stiffness matrix of barrette groups to be 

solved. The developed technique considerably reduces the problem size and the 

computing time. This hybrid technique is coded in a user-friendly computer 

program. 

The presented hybrid technique is used for linear and nonlinear analysis of 

laterally loaded barrettes/barrette groups embedded in multi-layered soil models. 

It has been verified by comparing linear and nonlinear results from analyzing 

single barrettes embedded in multi-layered soil with those obtained analytically 

in the available literature. Furthermore, a case study is carried out to compare the 

present technique results with those from load tests and 3D-FE models. In 

addition, two different 3D-FE models are used to compare the results from these 

models with those obtained by the hybrid technique. 

A comparative study of laterally loaded single barrettes in a real-subsoil is carried 

out, in which east Port-Said soil properties are considered. These are similar to 

the soil formation of London, Frankfurt, Rome, Hong kong, and Dammam. In 

this study, different methods available in the ECP 202 [56] for determining the 

effective-height of the barrette are used. Also, the linear and nonlinear soil 

models are compared to study soil nonlinearity. Finally, a parametric study is 
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carried out to investigate the behavior of laterally loaded single barrettes and 

barrette groups with different barrette dimensions, spacing, numbers, 

arrangement, material, and soil properties. 

6.2 Conclusions 

From studies carried out in this thesis, it could be concluded that: 

• The technique can be effectively used in linear and nonlinear analyses of 

laterally loaded single barrettes and barrette groups in layered soil medium. 

• Due to the lower number of nodes in the converted one-dimensional model 

rather than the three-dimensional finite element model, the first model 

consumes less computation time in the analysis. That enables analysis of 

large barrette foundations such as barrette group and barrette raft. 

• Verification examination of the present analysis for analyzing laterally loaded 

barrettes shows that results are in good agreement with those obtained 

numerically by 3D FE. 

• Good agreement is noticed while comparing the nonlinear analysis of 

laterally loaded barrette and measured values obtained from load tests. 

• Although the barrette head displacements of the present linear analysis of 

laterally loaded barrettes are very close comparing to those obtained 

numerically by 3D FE, the distribution of barrette lateral displacements along 

the barrette length is relatively softer (giving higher displacements) in the 

present analysis. The absolute difference in results of the base displacements 

is very small. It is less than 0.1 cm comparing to the barrette dimensions. In 

which the barrette head displacement is the effective displacement in this case 

of analysis. 

• In general, it can be concluded that the results of the present hybrid technique 

are in good agreement with those of 3D-FE models. 

• The comparative study presents guidelines when analyzing laterally loaded 

single barrettes in the east Port-Said area and similar soil formations around 

the world, such as London, Frankfurt, Rome, Hong kong, and Dammam. 

• The ECP 202 [56] equations for determining effective heights of square or 

circular piles in homogeneous soil is modified to determine effective barrette 

heights in multi-layered soil. 

• The ECP 202 [56] equations for determining the maximum bending moment 

and maximum displacement of square or circular piles with free head support 

is modified to determine these of single barrettes. 
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• The ECP 202 [56] equations for determining the ultimate lateral load of 

square or circular piles in sand using Broms (1964a) [10] method need to be 

updated with the one suggested by Barton (1984) [3], which is the more 

accurate one for piles in sand. 

• The maximum bending moment happens at 22% to 26% of the effective 

barrette height. 

• Determining the ultimate load capacity of laterally loaded single barrette 

needs more comparisons with field load tests. 

• The behavior of laterally loaded single barrettes analyzed in soil formations 

like that existing in east Port-Said is close to being linear when considering 

displacement criteria for every single barrette to be is taken as 5% of the 

barrette width. This value is considered as an acceptable practical value for 

analyzing barrettes. 

• The thickness of the topsoil layer is a controlling factor for the barrette-head 

displacement.  

• The horizontal displacement of the barrette/barrette group is not influenced 

by the properties of the underlying layers in the case where the topsoil layer 

thickness exceeds approximately 30% of the barrette height.  

• The lateral barrette/barrette group load capacity is affected by loading 

direction due to the dependence of the flexural stiffness of barrettes on 

barrette inertia.  

• Increasing the barrette/barrette group height to width ratio H/W more than 30 

has a very small effect because the barrette/barrette group height is reached 

to the effective-height of the barrette. 

• From the parametric study, the normalized spacing S/L is suggested to be 

equal or greater than three since the displacement ratio Rg decreases linearly. 

6.3 Recommendations for Future Works 

The scope for future studies based on the presented hybrid technique may also 

include: 

• Analyzing of nonrectangular cross-sections barrettes. 

• Analyzing Mono-piles. 

• Analyzing barrettes subjected to torsion load. 

• Analyzing barrettes under dynamic loads. 

It should be emphasized here that the above mentioned concluding remarks are 

specially related to the studied cases. Further future studies are strongly 
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recommended, including site measurements and back analysis. That to assess the 

validity and accuracy of the barrettes and barrette raft calculations in east Port-

Said. 
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8 APPENDIX 

8.1 APPENDIX (A) 

 
Figure A.1 Displacement for case (1) with subsoil (B&D). 

 
Figure A.2 Bending moment for case (1) with subsoil (B&D). 
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Figure A.3 Shear force for case (1) with subsoil (B&D). 

 

 
Figure A.4 Displacement u for case (2) with subsoil (A&C). 
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Figure A.5 Bending moment for case (2) with subsoil (A&C). 

 

 
Figure A.6 Shear force for case (2) with subsoil (A&C). 
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Figure A.7 Displacement u for case (2) with subsoil (B&D). 

 

 
Figure A.8 Bending moment for case (2) with subsoil (B&D). 
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Figure A.9 Shear force for case (2) with subsoil (B&D). 

8.2 APPENDIX (B) 

 
Figure A.10 Displacement u with the barrette height (case 2). 
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Figure A.11 Reaction forces Rx with the barrette height (case 2). 

 

 
Figure A.12 Shear forces Qx with the barrette height (case 2). 
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Figure A.13 Bending moments My with the barrette height (case 2). 

 

 
Figure A.14 Barrette rotations Theta-y with the barrette height (case 2). 
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Figure A.15 Displacement u with the barrette height (case 3). 

 

 
Figure A.16 Reaction forces Rx with the barrette height (case 3). 
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Figure A.17 Shear forces Qx with the barrette height (case 3). 

 

 
Figure A.18 Bending moments My with the barrette height (case 3). 

 

0

10

20

30

40

50

60

-600 -400 -200 0 200 400 600 800 1000
D

is
ta

n
ce

 z
[m

]
Shear forces Qx [kN]

H =20 [m]
H =30 [m]
H =40 [m]
H =50 [m]
H =60 [m]

W
=

 0
.8

 [
m

] L = 3.0 [m]

20

24

28

32

36

40

-200 -150 -100 -50 0 50

H =30 [m]

H =32 [m]

H =33 [m]

H =34 [m]

H =36 [m]

H =40 [m]

0

10

20

30

40

50

60

-500 500 1500 2500 3500 4500 5500 6500

D
is

ta
n
ce

 z
[m

]

Bending moments My [kN.m]

H =20 [m]

H =30 [m]

H =40 [m]

H =50 [m]

H =60 [m]

W
=

 0
.8

 [
m

] L = 3.0 [m]

24

28

32

36

40

200 400 600 800 1000

H =30 [m]

H =32 [m]

H =33 [m]

H =34 [m]

H =36 [m]

H =40 [m]



Appendix 
 

 

134  

 

 
Figure A.19 Barrette rotations Theta-y with the barrette height (case 3). 

 

 
Figure A.20 Displacement u with the barrette height (case 4). 
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Figure A.21 Reaction forces Rx with the barrette height (case 4). 

 

 
Figure A.22 Shear forces Qx with the barrette height (case 4). 
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Figure A.23 Bending moments My with the barrette height (case 4). 

 

 
Figure A.24 Barrette rotations Theta-y with the barrette height (case 4). 
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Figure A.25 Displacement u with the barrette height (case 5). 

 

 
Figure A.26 Reaction forces Rx with the barrette height (case 5). 
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Figure A.27 Shear forces Qx with the barrette height (case 5). 

 

 
Figure A.28 Bending moments My with the barrette height (case 5). 
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Figure A.29 Barrette rotations Theta-y with the barrette height (case 5). 

 

 
Figure A.30 Displacement u with the barrette height (case 6). 
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Figure A.31 Reaction forces Rx with the barrette height (case 6). 

 

 
Figure A.32 Shear forces Qx with the barrette height (case 6). 
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Figure A.33 Bending moments My with the barrette height (case 6). 

 

 
Figure A.34 Barrette rotations Theta-y with the barrette height (case 6). 
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Figure A.35 Displacement u with the barrette height (case 7). 

 

 
Figure A.36 Reaction forces Rx with the barrette height (case 7). 
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Figure A.37 Shear forces Qx with the barrette height (case 7). 

 

 
Figure A.38 Bending moments My with the barrette height (case 7). 
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Figure A.39 Barrette rotations Theta-y with the barrette height (case 7). 

 

 
Figure A.40 Displacement u with the barrette height (case 8). 
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Figure A.41 Reaction forces Rx with the barrette height (case 8). 

 

 
Figure A.42 Shear forces Qx with the barrette height (case 8). 
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Figure A.43 Bending moments My with the barrette height (case 8). 

 

 
Figure A.44 Barrette rotations Theta-y with the barrette height (case 8). 
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Figure A.45 Displacement u with the barrette height (case 9). 

 

 
Figure A.46 Reaction forces Rx with the barrette height (case 9). 
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Figure A.47 Shear forces Qx with the barrette height (case 9). 

 

 
Figure A.48 Bending moments My with the barrette height (case 9). 
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Figure A.49 Barrette rotations Theta-y with the barrette height (case 9). 

8.3 APPENDIX (C) 

 
Figure A.50 The load-displacement curve for Case (2). 
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Figure A.51 The load-displacement curve for Case (3). 

 

 
Figure A.52 The load-displacement curve for Case (4). 
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Figure A.53 The load-displacement curve for Case (5). 

 

 
Figure A.54 The load-displacement curve for Case (6). 
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Figure A.55 The load-displacement curve for Case (7). 

 

 
Figure A.56 The load-displacement curve for Case (8). 
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Figure A.57 The load-displacement curve for Case (9). 
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 الملخص العرب 
 

 

 

 “نمذجة الأساسات الباريتية تحت تأثير الأحمال الجانبية ”

 ملخص الرسالة 

التطور الحضاري الذي تشهده مصر في الآونة الأخيرة، مثل بناء العديد من المدن الجديدة، بناء أعلى برج  
إفريقيا بارتفاع   البنية    345في  تطوير  الجديدة،  العلمين  أبراج  المهد،  العليم، كاتدرائية  الفتح  م، مسجد 

س جيد لتجنب مشاكل التربة. قد يكون  التحتية والموانئ وغيرها. كل هذه المنشآت الضخمة تحتاج إلى تأسي 
لتحليل   تمت  التي  السابقة  الدراسات  معظم  التربة.  مشاكل  لتجنب  رئيسياً  حلاً  الباريت  على  التأسيس 
التفاعل التبادلي بين الباريت والتربة استخدم فيها طريقة العناصر المحددة ثلاثية الأبعاد. ويحتاج هذا التمثيل  

المحددة مما يؤدى إلى وجود نظام كبير من المعادلات التي تحتاج إلى حل. وبالتالي،    إلى شبكة كبيرة من العناصر
فإن هذا التحليل يستغرق وقتاً طويلًا حتى بالنسبة لأجهزة الكمبيوتر السريعة اليوم. في هذه الرسالة، تم  

ياً. وتأخذ هذه التقنية  تعديل تقنية تكوين المعامل لتحليل الباريت المفرد ومجموعة من الباريت المحمل جانب
في الاعتبار التفاعل التبادلي ثلاثي الأبعاد بين الباريت المحملة جانبياً والتربة المحيطة بعين الاعتبار. إلى جانب  
ذلك، تقلل هذه التقنية بشكل كبير من عدد المعادلات التي يجب حلها، ويمكن استخدام تلك التقنية في  

طي مع اختلاف تكوين التربة. تم دراسة مجموعة من الأمثلة والتطبيقات  كلا من التحليل الخطي وغير الخ 
ومقارنة نتائج التحليل للنموذج المقترح في هذا البحث مع النتائج المنشورة بالأبحاث السابقة، وذلك للتحقق  

رنة النتائج  من دقة طرق التحليل المقترحة. بالإضافة إلى ذلك، تم إجراء دراسة باستخدام التحليل الحالي لمقا
مع نتائج اختبارات التحميل الجانبي للباريت. ثم تمت مقارنة النتائج التي تم الحصول عليها بواسطة العناصر  
ثلاثية الأبعاد باستخدام نموذجين مختلفين مع النتائج التي تم الحصول عليها بواسطة التحليل الحالي. كما تم  

المحم  المفردة  للباريت  التربة لجسه حقلية لموقع حقيقي  إجراء دراسات مقارنة  بيانات  باستخدام  لة جانبياً 
بمنطقة شرق بورسعيد. تقدم دراسات الحالة إرشادات للمهندسين عند تحليل الباريت المحمل جانبيا في منطقة  
شرق بورسعيد أو المناطق ذات خصائص التربة المماثلة حول العالم. وأخيراً بحثت الدراسات المقارنة سلوك  

مواد،  البا خصائص  ترتيب،  عدد،  تباعد،  أبعاد،  ذات  جانبياً  المحملة  الباريت  ومجموعات  المفرد  ريت 
 وخصائص التربة مختلفة. 

الرسالة هي دراسة علمية في موضوع التفاعل التبادلي بين الباريت المحمل جانبياً والتربة وتحتوي على خمسة  
 أبواب على النحو التالي: 



 الملخص العرب 
 
 

 

 الباب الأول: 
 يحتوي على مقدمة عن البحث، والغرض منه، ومكوناته، مع عرض مشكلة تحليل الباريت المحمل جانبياً. 

 الباب الثاني: 
 يعرض هذا الباب ملخص للأبحاث السابقة المتاحة عن هذا الموضوع. 

 الباب الثالث: 
تطويرها وتطبيقها في ه  الرياضية المستخدمة والتي تم  النماذج  الباب على  ذا البحث. وذلك  يحتوي هذا 

تقنية تكوين المعامل. كما يشمل   العناصر المحددة المعتمدين على  باستخدام طريقة معامل المرونة وطريقة 
 أيضاً أساسيات تحليل الباريت المفرد ومجموعة من الباريت. 

 الباب الرابع: 
قترح في هذا البحث مع  ويتم فيه دراسة مجموعة من الأمثلة والتطبيقات ومقارنة نتائج التحليل للنموذج الم 

النتائج المنشورة بالأبحاث السابقة، وذلك للتحقق من دقة طرق التحليل المقترحة. بالإضافة إلى ذلك، تم  
إجراء دراسة باستخدام التحليل الحالي لمقارنة النتائج مع نتائج اختبارات التحميل الجانبي للباريت. ثم، تمت  

ا بواسطة العناصر ثلاثية الأبعاد باستخدام نموذجين مختلفين مع النتائج  مقارنة النتائج التي تم الحصول عليه
 التي تم الحصول عليها بواسطة التحليل الحالي. 

 الباب الخامس: 
ويتم فيه إجراء دراسات مقارنة للباريت المفردة المحملة جانبياً باستخدام بيانات التربة لجسه حقلية لموقع   

دم دراسات الحالة إرشادات للمهندسين عند تحليل الباريت المحمل جانبيا  حقيقي بمنطقة شرق بورسعيد. تق 
في منطقة شرق بورسعيد أو المناطق ذات خصائص التربة المماثلة حول العالم. وأخيراً بحثت الدراسات المقارنة  

مواد،    سلوك الباريت المفرد ومجموعات الباريت المحملة جانبياً ذات أبعاد، تباعد، عدد، ترتيب، خصائص 
 وخصائص التربة مختلفة. 

 الباب السادس: 
يشتمل على ملخص البحث وخلاصة ما تم التوصل إليه من نتائج والتوصيات للبحوث المستقبلية والأبحاث  

 المستخلصة من الرسالة. 



 

 

 الرحيم بسم الله الرحمن 

 

 هذه الكلمات شكر وعرفان لمن ساهموا في خروج هذا العمل.

  ي مؤلف  د./ أمين مسعد الجندي وعمي    أ.د./ محمد مسعد الجنديأولا أتقدم بخالص الشكر والامتنان لوالدي  

 فلولا مساعداتهم ما خرج هذا العمل إلي النور. ،ELPLAبرنامج 

 بالشكر والعرفان على تشجيعهما لي، وصبرهما معي.  وزوجتي لأميثانيا أتوجه 

المشرفين   إلى  والتقدير  بالشكر  أتوجه  حسنثالثا  محمد  حسن  العربيو    أ.د./  أحمد  إبراهيم  على    د./ 

 مساعدتهم والمراجعة والتدقيق لإخراج هذا العمل. 

  داروين فوكس د./  عادل هاشم همام و  أ.د./    ,  أ.د./ طارق نجيب سالمأتوجه بالشكر والتقدير إلى    رابعا

 علي مجهوده الكبير في المراجعة والتدقيق.
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 هيئة التحكيم 

 

 الموجز العربي 

هو حل حيوي لتقليل المشاكل الناتجة عن إزاحة التربة أسفل الهياكل الضخمة نظراً   الباريت

لقدرات التحميل المحورية والجانبية العالية. الطرق التقليدية لتحليل الباريت تعتمد بشكل أساسي 

هذه   تتطلب  الأبعاد.  ثلاثية  المحددة  العناصر  باستخدام  المحيطة  والتربة  الباريت  نمذجة  على 

ماذج جهداً حسابياً ضخماً. في هذه الرسالة، تم تطوير تقنية هجينة لتحليل الباريت المحملة الن

جانبياً سواء كان مفرداً أو في مجموعة. في هذه التقنية، يتم استخدام معامل المرونة لتحديد تشوه 

يطة. أيضاً،  التربة بناءً على حلول مندلين مع مراعاة التفاعل الكامل بين الباريت والتربة المح 

يأخذ في الاعتبار التفاعل الجماعي لكل باريت على مجموعة الباريت. من ناحية أخرى، يتم  

تقسيم الباريت في الاتجاه الرأسي إلى عناصر محدودة أحادية البعد. يتم تجميع مصفوفة صلابة 

طول   التربة على طول سطح المشبك بواسطة تقنية المعامل المركب لتكون أحادية البعد على

إضافة  التقنية  هذه  تتيح  ارتفاعه.  طول  على  المتغيرة  الإزاحة  ذو  للباريت  الرأسي  المحور 

مصفوفة صلابة التربة إلى مصفوفة صلابة الباريت، مما يؤدي إلى إنشاء مصفوفة الصلابة 

الكاملة للباريت المفرد او في مجموعة. نتيجة لذلك، يتم تقليل عدد المعادلات. تم إجراء عدد  

ير من عمليات التحقق للتأكد من دقة التقنية الهجينة المقدمة. بالإضافة إلى ذلك، تم إجراء كب

دراسة مقارنة للباريت المفردة المحملة جانبياً في باطن الأرض الحقيقي، حيث تم النظر في 

خصائص تربة شرق بورسعيد. أيضًا، تم إجراء دراسات بارامترية للتحقيق في سلوك الباريت 

د أو في مجموعة والمحملة جانبياً. تقدم الدراسة إرشادات لتحليل الباريت المفرد أو في المفر 

 مجموعة المحملة جانبياً. 

التفاعل التبادلي بين التربة والمنشأ، الأساسات العميقة، الخوازيق المستطيلة،  

 .تقنية تكوين المعاملالباريت المفرد، مجموعات الباريت، الأحمال الجانبية،  

الكلمات  

 الدالة 

 

 



 

 

  








