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Preface

Various problems in geotechnical Engineering can be investigated by the program GEO Tools. The
original version of GEO Tools GEOTEC Office was developed by Prof. M. Kany, Prof. M. El Gendy
and Dr. A. El Gendy. After the death of Prof. Kany, Prof. M. El Gendy and Dr. A. El Gendy further
developed the program to meet the needs of practice.

This book describes procedures and methods available in GEO Tools to analyze the problem of time-
dependent consolidation of clay. The methods consider various analysis aspects of the consolidation
problem such as, among others: uniform and time-dependent loading, cycling loading, nonlinear
compressibility parameters, multi-layered soil, normal- and over-consolidated clay. The initial
applied stress on the clay layers may be considered non-uniform.

GEO Tools has been developed for solving time-dependent settlement problems of clay layers using
three different numerical methods:

e Layer Equation Method (LEM), that was developed by Herrmann/ EI Gendy (2014).
e Finite Difference Method (FDM), that is the traditional solution of consolidation problems.
e Eigen Value Method (EVM).

Although a more practical and meshless method LEM was developed for the program, the old one of
FDM was considered because many geotechnical engineers are familiar with it. The developed LEM
method depends on selecting a number of nodes in the soil layers. Consequently, a better
representation for applied stresses on the layers can be represented. LEM requires fewer equation
terms, in which a few terms are sufficient to give good results.

El Gendy, O. (2016) had carried out a numerical modification on the semi-analytical solution of
Toufig and Ouria (2009) to be applicable for multi-layered soil subjected to any variable stress along
the depth of the soil using LEM. Some of verification examples for cyclic loading on multi-layered
soil carried out by him are presented in this book.

Many tested examples are presented to verify and illustrate the available methods. Furthermore, an
application for LEM on reloading time-dependent settlement of clay is presented in which a deep
excavation is necessary for buildings with basements. In this case, the soil stress reduces due to
excavation, and the reloading of the soil should be taken into account.
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5 Degree of Consolidation
5.1 Finite Difference Method (FDM)

5.1.1 Introduction

The analytical solution is difficult to solve the consolidation problem, when the clay layer is
subjected to an irregular distribution of initial excess pore water pressure. In this case, the use of a
numerical method is fairly common. The oldest numerical method used for solving the consolidation
problem is the Finite Difference Method, which was proposed by Gibson and Lumb (1953). The
assumption of this method is that the one-dimensional consolidation equation and the boundary
condition are approximated by finite difference formula. This numerical solution for one-
dimensional consolidation is described in the next paragraphs.

5.1.2 Formulation of excess pore water pressure for a single layer

The basic differential equation for one dimensional consolidation of Trezaghi's consolidation theory
is:

ou o’u
—=C,— 5.1
+~Ci o (5.1)
where:
u Pore water pressure at depth z, [KN/m?]
t Time for which excess pore water pressure is computed, [sec]

Cv Coefficient of consolidation, [m?%/sec]

To solve this equation numerically, consider the clay layer shown in Figure 5.1 in which the soil
layer is free drainage at its top and bottom. The layer of thickness H, is divided into m equal intervals
of thickness Az.

According to Taylor's theorem:

ou  At? 0%u At d%u

u (t+At)=u,(t) + At—+ + + 5.2
(EHA) = U O+ A+ S (5.2)
Ignoring second derivatives and above, the time derivative can be approximated by:
(t+At)—u. (t
au _uy(t+AD-u, () 53)

ot At

where the index i indicates that the values refer to the excess pore water pressures in the point z = zi.
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Figure 5.1
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The second derivative with respect to z can be approximated by the same way:

d%u Ui (1) — 20 () +—ui, (1)

~

0z° Az?

Substituting Eq. (5.3) and Eq. (5.4) in Eq. (5.1), gives:

where o =

exceed 1/6.

Az

U, (t+ At) = au (£) + (L— 20)u; (t) + oy, ()

v
2

(5.4)

(5.5)

is the operator of the equation, for convergence the value of the operator must not

This equation can be used for calculating the excess pore water pressure u in the grid points. The
excess pore pressure u at time t + At in the point i is calculated from that at time t in that point and in
the two points just above (i+1) and just below (i-1). This mean that u at time t is required in order to
calculate u at time t + At.
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Equation (5.5) is written in matrix form for m grid points in z-direction. Then, the excess pore water
pressure at any time for m nodes along the depth axis z can be expressed in a matrix form as:

Uiop o 1-2a o 0 0 0 | Utgp

u, 0 a 1-20 « 0 0 u,

u, 10 0 a 1-20 o O u, (5.6)
u, 0 0 0 0 o 1-20||u,

U)oy 1O O 0 0 0 o |[Un,

where:

Uop  Pore water pressure at the top of the layer, [kN/m?]
Ut  Pore water pressure at the bottom of the layer, [KN/m?]
Ui Pore water pressure at any depth i, [KN/m?]

t Time for which excess pore water pressure is computed
Ho Layer thickness, [m]

Tc Consolidation time

At Time interval, At = Tc/o

Az Depth interval, Az = Ho/m

® Number of time intervals

m Number of grid points

m+1  Number of depth intervals

o Operator, a = Cv At/AZ? < 1/6

5.1.2.1 Initial Condition

The initial excess pore water pressure at time t=0 is required to solve the finite difference scheme. In
one dimensional consolidation, the initial excess pore water pressure distribution u is equal to the
distribution of the applied vertical stress ¢ on the clay layer, thus:

T T
{utop u1 uZ um ubottom} :{Gtop Gl 62 Gm Gbottom} (57)

5.1.2.2 Permeable Boundary

At a free draining boundary there is no barrier to the flow and so the pore pressure remains constant,
thus the excess pore water pressure is zero. The soil layer is free drainage at its top and bottom.
Therefore, the excess pore water pressure at the top and bottom of the layer drops to zero, Utop = Ubot
= 0, at the first time interval. Equation (5.6) at t1 for the shown clay layer in Figure 5.1 is rewritten
as:
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u, 1-2a o} 0 0 c,
u, a 1-2a o 0 o,
u,r =| O a 1-2a « 0 G,
u, 0 0 a 1-2a o c,
usJ, | O 0 0 a 1-2a]|os

5.1.2.3 Impermeable Boundary

(5.8)

When the adjoining stratum at one boundary is impervious (Figure 5.2), there will be no flow across

the impermeable boundary.
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Figure 5.2 Clay layer with impermeable boundary at bottom

According to Darcy’s Law at an impervious boundary:

ou

—=0
0z
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That can be approximated by continuing the numerical subdivision by one more interval below
z=H,, so that in a point at a distance Az below the lower boundary a value of the pore water pressure

is defined, say ui+1(t). By requiring that ui-1(t) = ui+1(t), the condition Z—u =0 is satisfied at the
z
boundary.

Let ui-1(t) = ui+1(t) in Eq. (5.5), therefore for a point i on an impermeable boundary the Eq. (5) can be
modified as:

u, (t + At) = 2au, , (t) + (1 - 2a)u, (t) (5.10)

Equation (5.8) for a clay layer with impermeable boundary at bottom in this case becomes:

u, 1-2a o} 0 0 c,
u, a 1-2a o 0 0 o,
U;p = O a 1-20 « 0 (o (5.11)
u, 0 0 a 1-2a o} c,
usJ, | O 0 0 200  1-2a |05

5.1.3 Formulation of excess pore water pressure for multi-layered system

Consider as an example the two-layered system of clay layers with single drainage shown in Figure
5.3. Each layer of thickness h; has a different soil parameters. The vertical velocity of the flow in
both layers must be the same at the interface between the two layers.
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Equating the velocity flow at layer interfaces:
ou ou
K, — | =Kk,,| — 5.12
vl(az jl vz(az jz ( )
At the interface i between layers 1 and 2, the velocity of the flow in the two layers may be expressed
in difference as:
—Uu,_, +U, —Uu. +U,
k i—1 i — k i i+1 513
vl( AZl J vz( A22 ) ( )

where:

ui.i  Pore water pressure in layer 1 before the interface i at depth hi-Azi, [KN/m?]
ui«1  Pore water pressure in layer 2 after the interface i at depth hi+Azi+1, [KN/m?]
Ui Pore water pressure at the interface, [KN/m?]

Azj Depth interval in layers j, [m]

kvj Coefficient of permeability of layer j, [m/sec]
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Equation (5.13) may be rewritten as:

U; :;uu"'ﬁ—jum (5.14)
d+B;) @+B;)
where
| kJ+1Az
1k,
Uiy = oUi, (t) + (1_ 2a1)ui—1(t) +o,U; (t)
Uiy = a,U; (1) Jr(1_20‘2 )ui+l(t)+a2ui+2 (t)
Thus,
1-20 +0,p;
u; = U, (t) + ( ) Uiy (1) + ———=u; (1)
@+ B) d+B) (1 B;)
(5.15)
(L-2a, B, 0,
+— |+1() ui+2(t)
@+B;) d+B;)
For the two layers, let the operator o and time increment At are the same, therefore

At At k. [C,
a, =a., =C, C, .| —— |, consequently p. = 2= [—L
. [Az } V‘”[Azfﬂ] quently B, k. \C,.

J Vij+l

Equation (11) for two-layered system with impermeable boundary at bottom in this case becomes:

u, [ 1-2a o 0 0 0 | 5,
1-2a o 0 0
u (0
? o (1-20) a+op; (-20p; op; || 6.16)
u (o) .
’ @+B;) @+B;) @+By)  @+By)  @A+B) || 7
Us 0 0 o 1-2a a |[|%
UsJlo | 0 0 0 20, 1-20 |\%s

Now, any of the matrix equations (5.8), (5.11) or (5.16) of the excess pore water pressure can be
rewritten in compacted matrix form as:

{ul, =[H o} (5.17)
where:
{u}1 Excess pore water vector for the first time interval

{c} Vector of initial excess pore water
[H]  Operator matrix

-5.11-
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The excess pore water pressure at any time can be computed explicitly as follows:

attimet=t, + At {u}, =[H]{c}
attimet=t, +2At  {u}, =[H}u}, =[H]H]{c}
attimet=t, +3At  {u}, =[HJu}, =[H]H]H J{c}

and for the o increment

ul, =[H]"{o}

-5.12 -
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5.2 Eigen Value Method (EVM)

5.2.1 Introduction

The traditional Finite Difference Method (FDM) is used for the solution of the consolidation
problems, but the time stepping process in the solution is highly time consuming. An Eigen Value
Method (EVM) is adapted for analyzing time-dependent settlement problems. This method is derived
from the original finite deference solution of the consolidation problem out lined in the previous
section. It obeys the same stability rules and time discretization of the finite difference solution of the
problem. The numerical solution for one-dimensional consolidation by Eigen Value Method (EVM)
for a homogenous clay layer may be found in the reference Al-Kafaje (1992). The discretion of the
essential formulation of the consolidation problem by EVM is described in the next paragraphs.

5.2.2 Formulation of excess pore water pressure vector
5.2.2.1 Defining Eigenvalues and Eigenvectors

Consider [A] is an nxn matrix. Then, the value A is an eigenvalue of [A] if there exists a non-zero
vector {¢} such that:

[Alle} = Mo} (5.20)

In this case, vector {¢} is called an eigenvector of [A] corresponding to A.

The corresponding eigenvectors {¢}r for eigenvalues A+ can be found by solving a set of linear
simultaneous equations as follows:

[Alfe}, =2, {of, (5.21)

where Ar represent the eigenvalues of the basic equations [A] {¢}r, r=1, 2, 3...N.

5.2.2.2 Computing Eigenvalues and Eigenvectors
The equation [A]{¢@}=A{¢}can be rewritten as:

[[A1-M11He}=0 (5.22)
where [1] is the nxn identity matrix.
In order for a non-zero vector {¢} to satisfy this equation, [A]-A[1]=0 must be not invertible. That is,
the determinant of [A]-A[I] must be equal 0. Therefore, the eigenvalues of [A] are the roots of the
characteristic polynomial p(A):

p(L) = detJA]-A[1] (5.23)

For each eigenvalue A, the eigenvector {¢} is obtained by solving the linear system [A]-A[1]=0.

-5.13 -
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The above basic equation (19) may be rewritten for all n as:

[A]{(P}l =N {(P}l
[A]{(P}z =X, {(P}z
[A]{(P}a =M

or

[Al[®@] = [®]A]
Then, the matrix [A] is given:
[Al = [@][M[@] (5.25)

where [@] is the square eigenvalue matrix:

Gn) PaJy On),
and [A] is the diagonal eigenvalue matrix

The advantage of Eq. (24) is that raising the diagonal eigenvalue matrix [A] to any power o is carried
out by raising its diagonal elements to that power for example.

-1

(2] (O3] ®q M]t 0, 0, (2]
(A" =| P2l [Pzl [P ha Pal 102l 1P (5.26)
00, 0n), (00], Al len ), len), (@],

5.2.2.3 Computing excess pore water pressure by EVM

As, the new values of excess pore water pressure at any time can be computed explicitly as follows:

uj, =[H]"{c} (5.27)

Then, applying the EVM on the modified operator matrix [H]®, gives the explicit eigenvalue solution
for the excess pore water pressure at time intervals o.

-5.14 -
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uj, =[e]\[e]*{s} (5.28)
where:
[H]=[®]r][®]"  Operator matrix
[D] Square eigenvalue matrix
[A] Diagonal eigenvalue matrix

It is convenient to express the time in terms of the dimensionless parameter such as time factor. The
time intervals ® can be expressed as:

2 2
o="CT _mT, (5.29)

=
aH; a

where:

m No. of studied points

Tv Time factor, T, = CV—T;
d

Ha Length of drainage, [m].

For double drainage H, = H2° while for single drainage Ha = Ho

T

C

C, 2
LGt o) miCT,

and
AzZ? (dez oH?

m

Expressing the time intervals by o, the new values of excess pore water pressure at any time can be
computed explicitly as follows:

u}, =[H]"{} (5.30)

Applying the Eigenvalue Method EVM on the operator matrix [H]®, gives the explicit Eigenvalue
solution for the excess pore water pressure at time intervals o.

u}, =[e]]"[e] o) (5.31)

As it is mentioned before, the advantage of Eq. (5.31) is that raising the diagonal eigenvalue matrix
[A] to any power o is carried out by raising its diagonal elements to that power. Therefore, by the
conventional Finite Difference Method FDM the large number of calculation suffers from round off
error at each time interval. Consequently, the analysis progress of EVM allows to determine the
excess pore water pressure at any time without needing to compute intermediate values. It is also
possible to calculate the excess pore water pressure at a friction of a time interval.
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5.2.2.4 Eigenvalues and Eigenvectors for a clay layer with 5 grid nodes

As an example for a clay layer with pervious boundaries at top and bottom of m =5 grid nodes with
an operator a = 1/6, the eigenvalues may be given directly by:

A, :1—4asin2(2r—:;j, r=1...m (5.32)

where r is the interior node for which the Eigenvalue is needed, r = 1 to m.
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Figure 5.4 Single layer with 6 sub-layers
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Then, the eigenvalues for points 1 to 5 are:

x 6
7L2=1—ﬂsm2 2xm) S
2x6) 6
3, =1- 2sin2[ 3x®)_2 (5.33)
6 2x6) 3
M:l—isin2 4xnj:£
6 2x6 2
Ay =1—sin?[ 2™ _ 03780
6 2x6
The corresponding square eigenvalue matrix [®] and its inverse are:
1 -1 1 -1 1 ]
J3 -1 0 1 -3
[®]=] 2 0 -1 0 2 (5.34)
J3 1 0 -1 -3
1 1 1 1 1|
(1 3 2 3 1]

el'-24 o -4 o

> (5.35)

P ow M w e

Considering the symmetry of the problem due to the double drainage at the top and bottom of the
layer and a uniform initial excess pore water pressure uo on the layer, Eq. (31), yields to:

U, 2+v3) 2 (2-43)][e

ut =2l(31243) 0 (3-243)[ae (5.36)
6

us 4+23) -2 (4-243)||n8
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5.3 Layer Equation Method (LEM)
5.3.1 Introduction

Most of the available meshless methods for time-dependent settlement problems depend on deriving
an algebraic equation for each layer; some of these methods were introduced by Lee et al. (1992),
Xie et al. (2002, 2004 and 2005), Zhuang et al. (2005) and Morris (2002). In the solution, the derived
equation has an infinite number of series functions with an infinite number of coefficients. Also the
original solution of the 1-D consolidation problem presented by Terzaghi (1925) was a formula with
infinite series. Infinite series may be lead to oscillation. Furthermore, the methods assumed a
uniformly initial applied stress on the clay layers or regular shapes of stress such as a triangular
shape (Singh 2005). In a better case, the stress was assumed as a continuous function in depth (Lee et
al. 1992). The reason is that it is difficult to generate infinite coefficients to represent the applied
variable stress on the clay.

In this book, the Layer Equation Method (LEM) developed by Herrmann / El Gendy (2014) for
analyzing time-dependent settlement problems is considered. LEM depends on selecting a number of
nodes in the clay layers along the z-axis. Consequently, a better representation for applied stress on
soil layers can be represented. The method is also ideal for using a stress coefficient technique,
which may be extended to study the interaction of irregular loaded areas on the surface or contact
pressure due to foundation rigidity. LEM requires fewer equation terms, in which fewer terms are
sufficient to give excellent results compared to the available closed-form solution of time-dependent
settlement problems. However, algebraic equations of clay layers are developed from an initial stress
applied to a specified number of grid nodes, which can represent the excess pore water pressure at
any node on the layers.

LEM is used to investigate the behavior of the excess pore water pressure when the clay changes
from an over-consolidated state to a normally-consolidated state during the consolidation process
because the stress applied to the clay layers varies with time. These states were studied for a single
clay layer by Xie et al. (2008). They had determined the moving depth of the interface between over-
and normally-consolidated zones in a layer. The layer is considered to have an impervious base. The
initial load applied to the layer in each interval increment of time was uniform. Also, the initial
vertical effective stress due to weight of the entire layer itself was uniform. Besides, only two
coefficients of consolidation were considered; one for the normally-consolidated zone; and the other
for the over-consolidated zone. They had considered this case as a double-layered soil. In fact, the
initial applied stress generated on the soil from the surface loading is not uniform throughout the clay
depth. It is greater near the surface than at the base. In addition, maybe the clay has a pervious top
and base. It is also known that the initial vertical effective stress increases with depth. This means
that at any sub-layer within the clay, the state may change from over- to normally-consolidated,
especially for a thick clay layer. The analysis in this book takes into account the nonlinear response
of the excess pore water pressure due to the change of compressibility and permeability of the soil
during the consolidation process.
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5.3.2 Constant Loading

5.3.2.1 Formulation of Excess Pore Water Pressure

5.3.2.1.1 Defining Basic Functions

To formulate the analysis, the loaded area on the surface is divided into triangular elements as shown
in Figure 5.5. Then the contact pressure is represented by a series of contact forces Qjon the element
nodes. The soil under the loaded area may consist of multi-layered system of clay with different soil
parameters and is divided into n sub-layers with r nodes as shown in Figure 5.6. Stress coefficients
for the nodes under the loaded area due to contact forces can be determined as described by El Gendy
(2006).

At node j is:

g; = Contact pressure at node j

Q; = Contact force at node j
A; = Area around node j

. \Q =0 A

Figure 5.5 Loaded area with mesh of elements on the surface

According to El Gendy (2006), for a set of grid nodes of m contact forces Q; at the surface, the
vertical stress oy in a node depth | under the surface node k is attributed to stresses caused by all of
the contact forces on that node:

m

o= f,Q; (5.37)

=1

where fi j is the stress coefficient of node | due to the contact force at node j on the surface, [1/m?]. It
depends only on the geometry of the loaded area and the soil layer.

Each layer in Figure 5.6 has different soil parameters and geometries. ki [m/Year], Cvi [Year/m?],
mvi [m2/kN], zi [m] and hi [m] are the coefficient of permeability, the coefficient of consolidation, the
coefficient of volume change, the depth and the thickness of the ith soil layer, respectively. H [m] is
the total thickness of the clay layers.
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Figure 5.6 Multi-layered system

Atatimet=0, Eq. (5.37), for the entire clay layers at a section in the z-axis passing through point k,
in matrix form becomes:

{ol, =[f e}, (5.38)

where:

{o}o Initial vertical stress vector at timet=0
[f] Stress coefficient matrix

{Q}o Initial contact force vector at time t = 0.

The solution depends on choosing a formula that represents the excess pore water pressure along the
z-axis and satisfies the boundary conditions. A partial differential equation such as the consolidation
equation can be solved and expressed in a series of N terms as:

u(z) =Y .C 0,2, (5.39)
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where:

u(z, t) Excess pore water pressure at any vertical depth z and time t, [KN/m?]
@j(z) Set of basic functions in the variable z only

yj(t)  Coefficients of basic functions in the variable t only

Cj Constants of basic functions

N Number of function terms (Number of studied nodes)

z Vertical coordinate, [m]

t Time for which excess pore water pressure is computed, [year].

Coefficients and constants of basic functions can be obtained by selecting a set of N arbitrary nodes
and their function values u(z, t). The basic functions are chosen to satisfy the boundary condition.
The boundary conditions for double drainage are u(0, t) = 0 and u(Ho, t) = 0, while those for single
drainage are u(0, t) =0 and ou(H,,t)/0z =0. To select N arbitrary nodes, each layer is divided into

m; sub-layers with depth increment Azi = hi/mi, which gives a total r nodes. For a pervious bottom
boundary the excess pore water pressure at the bottom boundary is known and equal to zero.
Therefore, studied nodes in this case are less than those of an impervious bottom boundary by a
node. The number of studied nodes will be N = r-1 for a pervious bottom boundary, while that for an
impervious bottom boundary will be N = r. Suitable basic functions for excess pore water pressure
problems are as follows:

¢;(2) = A sinfpn & )+ By coslun &) (5.40)

and corresponding coefficients are:

v () =exp(-piAST,) (5.41)
where:
& Local depth ratio for layer i, & = zi/h;
Ajj and Bij Coefficients of basic functions
Aj Differential equation operator
i Parameter of the coefficient of consolidation and thickness, u, = (h, /h,),/C,, /C,,
Tui Time factor, T, =c,t/h?.

Now, the equation for excess pore water pressure ui(z, t) for layer i in a multi-layered system may be
expressed as follows:

u,(z,1) = ZN:Cj [AU Sin(“’i)‘j&i )+ B;; COS( M€ )] exp(‘“’iZA‘?Tvi) (5.42)

To satisfy the condition of the governing differential equation for 1-D consolidation (Terzaghi's

. o%u, au, . : .
equation) C,, a—uz' = % , the following equations should be satisfied:
z
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WA, = uék?T\,z = .. =WAT, = o;t

jvl n“¥jtvn

Cvl
h?

where w; =

2
}“i

Eq. (5.42) may be written for N studied nodes in a matrix form as:

uj=[e] [£,]'{c}

where:

{u} Vector of the excess pore water pressure uj, j=1to N
{C} Vector of constants Cj, j=1to N

[@] Matrix of basic functions

[E] Diagonal square matrix of the exponential functions.

where matrix [®] for double drainage boundaries is given by:

B, B, By .. .. .. B,

B, B, By .. .. .. B,

B, B, Bs .. .. .. B,
[o]=

Buyt Bwwr Buows - - - B

CBul  [Br|  [Basl e o [Bu]

and matrix [®] for single drainage boundary is given by:

Bax By By Ban
By Bz, B Bs,
B B, Bis B
[]=
B.. B, B, . .. .. B,
_B(n+l)1 Bz Bas o+ = o Bl |

while the diagonal square matrix [E\] is given by:

[E,]=diag[exp(-©,) exp(-w,) exp(-o,) .. exp(-o,)]
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5.3.2.1.2 Determining Coefficients Ajj and Bj;

Relations among coefficients Ajj and Bij can be obtained using interface and boundary conditions.
Equating the excess pore water pressures ui(zi, t) = ui+1(zi, t) at layer interfaces, leads to:

A Sin(}iix]éi )"‘ Bj; COS(Hi)‘jEJi ): Ay Sin(“nl}\'jéiﬂ)_'_ B Cos(l’tnl}“jénl) (5.48)
ou ou i
while equating the vertical velocity of flow k| — o) = kv(I+l - at layer interfaces, leads to:
i+1

&[Au COS(Hi}\‘jai )_ By Sin(uixjai )]= Ay COS(Hm}‘jam)_ B Sin(“m}“j&m) (5.49)
My kv(i+1)hi

At the interface & =1 and &;+1 =0, Egs. (5.48) and (5.49) then become:
A, sin(uixj )+ B; cos(uixj )= By (5.50)

%[Au COS(Uikj )— Bij Sin(uilj )]: A(i+1)j (551)
Ky Koy M

Satisfying free drainage at the top uz(0, t) = 0, requires that:

A;=1andB,;; =0 (5.52)

From Egs. (5.51) and (5.52), coefficients Ajj and Bj; can be expressed as:

R, =[6]{R}; (5.53)

where
{Rh={Aj B”F,i=L2pmn
[mycos(ur;) -mysin(un;) (5.54)
o} _[ sin(p,)  cosun) }
and:

wk .h . C.
I vi' i+l — mVI ] (555)

M(H—l) kv(i+l)hi mv(i+1) Cv(i+1)

The vector {R}» is obtained from boundary conditions of the two cases of single and double
drainages. Applying boundary conditions at the base where u=0 for double drainage and ou/0z=0 for
single drainage, thus gives:
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[sq iR}, =0 (5.56)
where the matrix [Sq] is given by:

[s1=[sin(u,%,) cos(u,2,)] fordoubledrainage

5.57
[sq]=|cos(u,r,) —sin(u,,)] forsingle drainage (557

From Egs. (5.54) and (5.57), the following characteristic equation in the unknown Eigen values Aj
(differential equation operators) can be obtained:

[Sq J6], 1R}, =0 (5.58)

The operator ; is the positive root of the above characteristic equation. Substituting the value of A;
obtained from Eq. (5.58) into Eq. (5.53), gives coefficients Aj; and Bj;.

5.3.2.1.3 Determining Constants C;

Constants Cj can be found using the initial condition uj(z, 0) = uo(z). Consider a system of linear
equations at a set of N grid nodes at time t = 0 as follows:

{ul, =[@fc} (5.59)
where {u}, is the vector of initial excess pore water pressure

Substituting Eqg. (5.59) into Eq. (5.44), gives the following matrix equation for excess pore water
pressure:

=[] [E, @] {u}, (5.60)

The advantage of Eg. (5.60) is that raising the diagonal matrix [Ev] to any power of time t is carried
out by raising its diagonal elements E,; to that power. This equation is similar to the equation of EVM
but it has different eigenvalues because the deriving of both are different..

5.3.2.2 Degree of Consolidation

Integrating Eq. (5.42) over the entire layer i, gives the average excess pore water pressure Au; at any
time factor in that layer as follows:

Au; :hij hiui(z,t) dz :—ZN:%{Aj[l—cos(pikj)]+ B; sin( ikj)} exp(—mjt) (5.61)
i 0 i = A

oi I : J‘O oi ( ) ( " )
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where 6,i(z) is the initial stress in a layer i due to a foundation load. [KN/m?].

The degree of consolidation U, and Us at the required time t can be obtained from either the stress:

U —1--=2 (5.63)

or the settlement:

vaiAuihi
= W (5.64)

S n

Z m,;Ac ;i h;

i=1

U

5.3.3 Variable (Linear) Loading

In practice, the total load on clay under a structure is applied over a period of time. In this case, the
total load of construction on the surface gc can be applied gradually over a time tc as shown in Figure
5.7. The governing equation for 1-D consolidation, taking into account the variable loading with
construction time as indicated by Lee et al. (1992), can be expressed as:

2
c, a_uz, _ou; do; (5.65)
oz ot dt

An analytical solution for Eq. (5.65) is difficult. To determine the excess pore water pressure, the
integral can be evaluated by a series of M steps-load increment at the surface Aq at interval of times
At (Figure 5.7). The load increment at the surface Aq will lead to an increment of vertical stress doi at
node i.

-5.25-



GEO Tools

0.= MAq
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Figure 5.7 Applied load in a series of steps

For determining the excess pore water pressure due to step load increments, the excess pore water
pressure induced by the previous load is obtained, and at the same time the excess pore water
pressure induced by the additional load is determined. The results of this process may be expressed
explicitly as:

{ul, = [o]E, " [@]*{{u}, + {sul, } (5.66)

In Eq. (5.66), the total load is applied by M steps of equal load increment. Therefore, the additional
initial pore water pressure vectors in all steps are the same and equal to {su}, = % {u}

Now the vector of pore water pressure at time t may be written as:
ul, =[@]E, ][] sul, +[@]E, ] [0]{sul,
+.+ (5.67)
+[@]E, [ [o] ou}, + [@]E, [ [@] {Buj, +[@]E, I [@]*{sul,

where:
At Time interval, [Year], At =tc /(M-1)
tc Construction time, [year]; tr =t-tc, [year]

{du}o Vector of additional initial pore water pressure
{u}c Vector of pore water pressure at time tc
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{u}k Vector of pore water pressure at interval k.

Replacing tr by t-tc in the above equation gives:

v

o) = 0Ie o] ), + oE, 1 (o], .
Cole 1 o] oul, +..+ [, ] o] oul

1

Replacing {5u}o by %{u 1, in the above equation and rewriting the equation gives:

|]+ EV ]7At +[E ]72At +[E ]73At

W} == [o]E, ] o o] ul, (69)

M +..+[E

v

Eq. (5.69) is rewritten in matrix form as:

u} =[] [£,]*[D] [@] *{u}, (5.70)

where [D] is a diagonal square matrix. The diagonal elements of the matrix [D] are defined by:
1
D, = M[“ exp(oajAt)+ exp(ijAt)+ .t exp((M - 1)0)jAt)] (5.71)

The summation of the above series when M= can be estimated as follows:

From the principle of mathematics, the summation of the following geometric series can be given by:

n-1 _ N
1+r+r2+r3+r“+...+r”‘1:Zrk:1 ' (5.72)
o 1-r
Thus the summation of the series in Eq. (5.71) is given by:
1 1-exp\Mo ; At
Pl A1) (5.73)

T M 1-explo,At)

t
Substituting the value of M = A_Ct +1in Eq. (5.73), gives:
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t
D =
L 1-explo At) 6.74)
At
or
1—exp(mjtC +mjAt)
D, = T (5.75)
ACt—Aﬁ[exp(ijt)ﬂ—exp(ijt)
or
1- t At
S explo,t, )xexplo;At) 576)
ACt—Aﬁ[exp(ijt)ﬂ—exp(ijt)
The exponential function exp(oajAt) can be defined by the following power series:
. _ n A 2 A 3
eXp(u)jAt):Z(wﬁt) :1+ijt+(w’2|t) +(w‘3lt) o (5.77)
n=0 . 4

As the value of Atis very small, then terms of At having power equal and more than 2 can be
neglected, then:

explo,At)~ 1+ o At (5.78)
Substituting the value of exp(mjAt) in Eq. (5.76), gives:

1-explot, )Jx (1 +o,At)

Dj — (5.79)
Lt _
. At(l+oajAt)+1 (1+cojAt)
or
5 _ 1-explo;t, )-explot, Jx oAt 5.50)
J LC—t—c——CcojAt+1—1—o)jAt
At At
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or

D. = 1- exp(mjtc)— eXp(coth)x o;At

]

(5.81)

—o,t, -~ oAt

The value of Attends to zero when M = co. Therefore, the summation of the sires in Eq. (5.71) is
given by:

5 _ explot, )-1

j

(5.82)
ot

Now, the equation for excess pore water pressure ui(z, t) for layer i in a multi-layered system
becomes:

u, (z,t) = zN: D,C,[A, sin(u,x &, )+ B, cos(ur &, )] exp(w t) (5.83)

and the average excess power water pressure Aui becomes:

Au; _1y D}iCj {Aijb'_cos(“i}‘j)]+ B; Sin( ikj)} eXp('(’)jt) (5.84)
Hij A
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5.3.4 Cyclic loading
5.3.4.1 Introduction

Cyclic loadings are often applied to clay layers under structures subject to loading and unloading
circumstances such as silos and tanks. Toufig and Ouria (2009) presented a semi-analytical method
to determine the pore water pressure and degree of consolidation for a rectangular cyclic loading,
considering the effect of the change of the consolidation coefficient of the soil layer. In the method,
changes in the consolidation coefficient are applied by modifying the loading and unloading
durations using a Virtual Time. Based on the superimposing rule a set of continuous static loads in
specified times are used instead of the cyclic load in the transformed time space. Each full cycle of
loading is replaced by a pair of static loads with different signs. Based on the Terzaghi’s theory the
pore-water pressure distribution and the degree of consolidation are calculated for each static load
and the results are superimposed. Toufig and Ouria (2009) verified the solution by carrying out a set
of laboratory consolidation tests under cyclic load.

El Gendy, O. (2016) had carried out a numerical modification on the semi-analytical solution of
Toufig and Ouria (2009) to be applicable for multi-layered soil subjected to any variable stress along
the depth of the soil using LEM. To illustrate the possibility of LEM to handle cyclic loading, three
types of cyclic loadings are considered as shown in Figure 5.8. The change of compressibility of soil
under cyclic loading can be described as shown in Figure 5.9. This numerical solution for cyclic
loading on multi-layered soil is described in the next paragraphs.

q
Jc Trapezoidal cyclic loading

q 05tc tc 15tc 2tC 35tc t
e Triangular cyclic loading

q 05tc . 2tc 3tc ‘t
q Rectangular cyclic loading

C

0.5tc te 1.5t 2tc 2.5t 3t t
Figure 5.8 Cyclic loading types
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Figure 5.9 Relationship between void ratio and stress (loading, reloading and unloading cases)

5.3.5 Virtual time method for modeling rectangular cyclic loading

To illustrate the solution of the consolidation of the clay under cyclic loading using the virtual time
method in a simple way, consider the bilinear model shown in Figure 5.10, which describes one
cycle of rectangular cyclic loading as an example. In the model, the coefficients of volume change my
and permeability ky of the clay changes during the loading and unloading half cycles. The coefficient
of consolidation Cv is a function of these parameters and changes in each cycle of loading. The
coefficient of consolidation is assumed to have only two different values in the state of normally
consolidated NC or overconsolidated OC as indicated before , where Cync) = B Cv(oc).

In Figure 5.10, at first half cycle, clay is in NC state and stress path is according to [1-2] route.
During the unloading process of all half cycles, clay is at OC state and stress path is according to [2-
3] route. After the first full cycle, in the next loading half cycles, stress path will be according to [3-
4-5] route. Position of point 4 is the same as the preconsolidation pressure c¢ application point,
which represents the maximum degree of consolidation that the clay obtained in the previous cycle.
This o increases by increasing number of cycles and reaches to a point where the clay stays in OC
state during the entire loading phases, which is called steady-state. The clay is in the NC state when
the degree of consolidation is greater than its previous values (according to routes [1-2] and [4-5]). It
is OC when it does not have the maximum of the previous values (according to the route [2-3-4]).
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Figure 5.10  Plastic behavior of soil under cyclic loading

5.3.5.1.1 Definition of virtual time

Cyclic loading calculation requires to use two different values of coefficient of consolidation, the
value of Cy in routes [1-2] and [4-5] is equal to Cycy and it is equal to Cy(oc) in route [2-3-4]. Since
the time factor Ty, is a linear function of coefficient of consolidation Cy and time t, it means that the
equal variation of both factors would cause same changes in the results. In order to obtain the results
considering the varying Cy, any changes of the C, is applied to t and Cy is assumed to be constant as
described in the following time factor equation:

_(kC)t _C,(kt) _Cit

T = = , t =kt 5.85
" H§ Hf  H{ (5.85)
where:
Ha Length of the drainage pass
t Real time
t' Virtual time and k can be any factor.

This idea introduces a transformation function, where a clay layer in which C, is variable, constant
Cv can be substituted in an adjusted time space. During the time period of the unloading half cycles
(route [2-3 in Figure 5.10] where the clay is in OC state, the value of Cy is different from its value in
NC state. In this case, the calculation can be carried out during unloading periods by Cync) and a
virtual time t' using the Eq. (115). Therefore, the equivalent time for unloading half cycles may be
defined as:
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t
L=, N=246 (5.86)
2

where tc is the period time of the cycle and B is the virtual time factor, which are introduced in Figure
5.10 and N is the number of the half cycle.

5.3.5.1.2 Determining the time portion of each phase

After the first full cycle (a loading and an unloading half cycle) as indicated in Figure 5.11, the clay
is in OC state until the degree of consolidation Ua> reaches the previous maximum degree of
consolidation, which is equal to the degree of consolidation at the end of the last loading phase Uc.
The time portion of each loading phase Aty shown in Figure 5.11 to get points similar to point 4 in
every half cycle of loading can be replaced by:

Aty =—N (5.87)
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U
Figure 5.11
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5.3.5.2 Rectangular Cyclic Loading under Loading and Reloading

Figure 5.12 shows rectangular cyclic loading adapted by the superimposing rule. In this type of
loading, Aty is the time portion of each loading half cycle in which the soil is in OC state (according
to route [3-4]) and then becomes NC. In order to define the virtual time transformation function for
loading half cycles, the value of Aty must be known. On the other hand, superimposing rule can be
used to replace a cyclic loading by a set of static loads. As shown in Figure 5.12, the cyclic loading
system in the real time space is adapted in the virtual time space, each full cycle of cyclic load is
replaced by a pair of static loads with plus and minus signs. The vector of pore water pressure for
rectangular cyclic loading at a period of time tc can be determined as follows:
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At the first halve cycle (point 1), the pore water pressure vector is:

wl, =[@] [£,] % [0]*{u}, (5.88)

At the second halve cyclic (point 2), the pore water pressure vector is:

ol =[] [£,]575 [0 o}, - 0] [£, ] [o] {u}, 5:89)

At the end of interval time Atz (point 3), the pore water pressure vector is:

Aty t, At At,

o), =[o] [£,1 55 15 (o] ul, ~[0] [£,)57F [o]*{u}, +[o] €]

At the middle of the second cycle (point 4), the pore water pressure vector is:

[@©]'{ul, (5.90)

ol =[] [ 1555 M5 o, -, ](57 e o, 591
el (5,15 (5 o] ul,
At the end of the second cycle (point 5), the pore water pressure vector is:
Wl =[o] [&, 1575 5 a5 o] [8)(5F 55 592)
vl (6,17 (55 ol o}, ~[o] [€,15 [o]*{ul,
Equations (5.89) to (5.92) may be rewritten as:
o =[] [ [£55) -[e)5 | o], 5.99)
u} =[@] [[EV 15505 155 +[E]F } (@] {ul, (5.94)

u}, =[o] {[E 55 b))% M) o[, 155 Atz)} [0]*{ul, (5.95)

t

{%:m@m@wJﬁwﬁ4m@ﬁHﬁﬁﬁﬁaﬁﬁﬁ%—mm}mmm

(5.96)

In general, the pore water pressure vector at the end of At of the n¢ cycle is given by (such as point
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3):

2n.-1

Ul 5 =0 ]{Z( H[E ](‘ o ]} [o]*{ul, (5.97)

while, the pore water pressure vector at the middle of the nc cycle is given by (such as point 4):

2n.-1

Wl =[o 1{z< e ]w o]}, 599

and the pore water pressure vector at the end of the nc cycle is given by (such as point 5):

Ul = {Z( )*[E } o] Hul, (5.99)

where
T = (2n0(1+[3)+ 2- k;l(l—(—l)k)_gz( ~( )<k+1>)JLt1_CB
+( B)[ZiAtk ' (1_ k+l )At[ kl] J

5.3.5.3 Trapezoidal Cyclic Loading

The vector of pore water pressure for trapezoidal cyclic loading at a period of time 2t; can be
determined as follows (Figure 5.13):
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Figure 5.13  Trapezoidal cyclic loading adapted by the superimposing rule
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At the first halve cycle (point 1), the pore water pressure vector is:

= [@] [,] % [D] [@] "{u}, (5.100)

At the second halve cyclic (point 2), the pore water pressure vector is:

), =[o] [€,] (55 Lo} ), ~[o] [€,]1% [Dlo] ), (5.101)
At the end of interval time Atz (point 3), the pore water pressure vector is:
fuly =[] [£,)(55)F [Dlo] u}, - o] [£,]5 [D)o] ), 5102

At,

+[o] [E,]'+ [D]®]*{aq,}

Aty Aty

s =[0] [£,](55 ) [DIo] u}, ~[@] [£,]5" 5 [Dlo] {u),

o] 6,1 ool bl 6109
At the middle of the second cycle (point 4), the pore water pressure vector is:
ol =[] [, )55 5 (5 o), ~[o] [£,15°5 M5 o,
(5.104)

Ao 63 oF fol ol +1-5% ol () ool ol

c c

At the end of the second cycle (point 5), the pore water pressure vector is:

), =[] [£,) 555 (5 5 Dol ul, - [e] [£,15 5 M5 )% [Dlo] ul,

Ao (655 ool 12 o] (61154 -[o) ()5 Do) b
(5.105)
Equations (5.101) to (5.105) may be rewritten as:
At point 2, the pore water pressure vector is:
oy, = o] | )55 - [£)5 | [DLe] bl (5.106)

At point 3, the pore water pressure vector is:
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sty M,

o [E )55 e (e | folol 5107

At point 4, the pore water pressure vector is:

ot AL (t t. At ) (t

e )5 ) e )l v k)

{U}4 = [CD] s At, [EV]%{%-MZ] +(1_ At, J[EV][E-MZ] [D][q)]fl{u}o (5.108)

c C

At point 5, the pore water pressure vector at the end of the second cycle is:

{ []mﬁ%ﬁﬁwﬁ4m&%ﬁM% _—
5 =P Ay, (1 t, t, t, t, DJo]* 0 5.109
u} At, [EV]T(E'At2j+£ {1_ At, ][EV]@%} £]h {u (5.109)

+ » —|E

c c

For simplicity equations (5.108) and (5.109) may be rewritten as:

t, te At [t t, At ) (t t

{u}, =[] {[EV][z*zmHS'A‘ZJ —[EV](?BT]+(E°'AtZJ +[EV]%+(EC'M2) } [D]@]™{ul, (5.110)

o, Lo Yo at, |4+t L A ]t ag, |4t
A R
t

LRI CE s

] [D]o] " {ul, (5.111)
In general, the pore water pressure vector at the end of Atnc of the nc cycle is given by (such as point
3):

AL,
tC

fuly, = [0] { £ z (-1 [Ev]ﬂﬂéa‘;wnﬂ DORH 5.112)

while, the pore water pressure vector at the middle of the nc cycle is given by (such as point 4):
2n,-1 ) t,
b =10l | 3 le ]3| o 5113
i=1

and the pore water pressure vector at the end of the nc cycle is given by (such as point 5):
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ol =[o] [z< ), ]T} DJo] ],
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5.3.5.4 Formulation of pore water pressure for nonrectangular cyclic loading

Figure 5.14 shows different types of cyclic loading. The types may be represented any expected
cyclic loading shape. In the figure, there are three parameters to, a0 and o reflect the properties of the
loading. The number of cycle is N. The time t, represents the time length of the subjected load
whatever the load geometry is, while the time Bolo is the total length of the cycle. The parameter oo
represents the load geometry, where ao=0 creates a rectangular cyclic loading, oo = 0.5 creates a
triangular cyclic loading and 0<0,0<0.5 creates a trapezoidal cyclic loading.
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Figure 5.14 Types of cyclic loading
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5.3.6 Nonlinear Analysis

Many researchers, Zhung et al. (2005), Zhuang and Xie (2005), Conte and Troncone (2007), Lekha et
al. (2003), Xie et al. (2002, 2005 and 2006), Chen et al. (2005) and Abbasi et al. (2007), had used the
assumption of nonlinear analysis proposed by Davis and Raymond (1965) to introduce a nonlinear
analysis of 1-D consolidation with variable compressibility and permeability. They assumed that the
decrease in permeability is proportional to the decrease in compressibility. Therefore, if the
coefficient of consolidation is considered as constant during the consolidation process (Eq. 5.115),
the only soil variable during the consolidation process required for the nonlinear analysis will be the
coefficient of volume change.

C. L:;‘“ (5.115)

where:

Yw Unit weight of the water, [KN/m?3]

mwi  Initial coefficients of volume change in a layer i, [m?/kN]
kwi  Initial coefficients of permeability in a layer i, [m/year].

During the consolidation process, void ratio-effective stress response is given by:

& =€, —C, IOQ( G,i j (5.116)
Goi

where:

ei [-] Void ratios at time t and the initial void ratio of 